Have a personal or library account? Click to login
Narrowband array processing beamforming technique for electrical impedance tomography Cover

Narrowband array processing beamforming technique for electrical impedance tomography

Open Access
|Dec 2019

References

  1. D. S. Holder, “Electrical Impedance Tomography: Methods, History and Applications”, CRC Press, 2004.
  2. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance.,” Phys. Med. Biol., vol. 50, no. 11, pp. 2543–57, 2005. https://doi.org/10.1088/0031-9155/50/11/007
  3. E. A. Thompson, J. Xiang, and Y. Wang, “Frequency-spatial beamformer for MEG source localization,” Biomed. Signal Process. Control, vol. 18, pp. 263–273, 2015. https://doi.org/10.1016/j.bspc.2015.01.004
  4. M. Viberg, “Introduction to Array Processing”, Academic Press Library in Signal Processing, vol. 3, pp. 463–502, 2014. https://doi.org/10.1016/B978-0-12-411597-2.00011-4
  5. B. D. Van Veen and K. M. Buckley, “Beamforming: a versatile approach to spatial filtering,” IEEE ASSP Mag., vol. 5, no. April, pp. 4–24, 1988. https://doi.org/10.1109/53.665
  6. E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Trans. Antennas Propag., vol. 51, no. 8, pp. 1690–1705, 2003. https://doi.org/10.1109/tap.2003.815446
  7. T. F. Zanoon and M. Z. Abdullah, “Early stage breast cancer detection by means of time-domain ultra-wide band sensing,” Meas. Sci. Technol., vol. 22, no. 11, p. 114016, 2011. https://doi.org/10.1088/0957-0233/22/11/114016
  8. N. Cao and A. Nehorai, “Tumor localization using diffuse optical tomography and linearly constrained minimum variance beamforming,” vol. 15, no. 3, pp. 896–909, 2007. https://doi.org/10.1364/oe.15.000896
  9. C. S. Lengsfeld and R. A. Shoureshi, “System and Method for Beamforming in Soft-Field Tomography,” US 2013/0109962 A1, 2008.
  10. P. Lafortune and R. Aris, “Linearly constrained minimum variance spatial filtering for localization of conductivity changes in electrical impedance tomography,” Int. J. Numer. Method. Biomed. Eng., vol. 28, no. 1, pp. 72–86, 2015. https://doi.org/10.1002/cnm.2703
  11. J. S. Lioumbas, A Chatzidafni, and T. D. Karapantsios, “Spatial considerations on electrical resistance tomography measurements,” Meas. Sci. Technol., vol. 25, no. 5, p. 055303 (12 pp.), 2014. https://doi.org/10.1088/0957-0233/25/5/055303
  12. G. J. Saulnier, R. S. Blue, J. C. Newell, D. Isaacson, and P. M. Edic, “Electrical impedance tomography,” IEEE Signal Process. Mag., vol. 18, no. 6, pp. 31–43, 2001. https://doi.org/10.1109/79.962276
  13. C. Venkatratnam and N. Farrukh, “A Novel Numerical Technique to Enhance the Spatial Resolution of Electrical Impedance Tomography Systems,” IJAER, vol. 10, no. 19, pp. 40659–40662, 2015.
  14. C. Venkatratnam and N. Farrukh, “Electrode considerations, excitation methods and measurement techniques for electrical impedance tomography,” IFMBE Proc., vol. 56, pp. 1–5, 2016. https://doi.org/10.1007/978-981-10-0266-3_1
  15. R. M. Fish and L. a Geddes, “Conduction of electrical current to and through the human body: a review.,” Eplasty, vol. 9, p. e44, 2009.
  16. M. Sikora, Ryszard Zenczak, “Optimum selection of frequency for medical equipment using electrical impedance tomography,” Int. J. Appl. Electromagn. Mech., vol. 10, no. 2, pp. 130–153, 1999. https://doi.org/10.3233/jae-1999-136
  17. S. C. Chapra and R. P. Canale, “Numerical methods for engineers,” Math. Comput. Simul., vol. 33, no. 3, p. 260, 2015.
  18. Adler and W. R. B. Lionheart, “Uses and abuses of EIDORS: an extensible software base for EIT.,” Physiol. Meas., vol. 27, no. 5, pp. S25–S42, 2006. https://doi.org/10.1088/0967-3334/27/5/s03
  19. C.-N. Huang, F.-M. Yu, and H.-Y. Chung, “Rotational electrical impedance tomography,” Meas. Sci. Technol., vol. 18, no. 9, pp. 2958–2966, 2007. https://doi.org/10.1088/0957-0233/18/9/028
  20. J. C. N. Margaret, Cheney David, “Electrical Impedance Tomography,” SIAM Rev., vol. 41, no. 1, pp. 85–101, 1999.
  21. Cao et al. “A novel time-difference electrical impedance tomography algorithm using multi-frequency information” BioMedical Engineering OnLine., vol. 18, 84, 2019.
  22. Vedula et al. “Learning beamforming in ultrasound imaging” Proceedings of Machine Learning Research, vol. 102, pp.493–511, 2019.
Language: English
Page range: 96 - 102
Submitted on: Nov 17, 2019
Published on: Dec 31, 2019
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2019 Venkatratnam Chitturi, Nagi Farrukh, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.