Have a personal or library account? Click to login
An efficient and automatic ECG arrhythmia diagnosis system using DWT and HOS features and entropy- based feature selection procedure Cover

An efficient and automatic ECG arrhythmia diagnosis system using DWT and HOS features and entropy- based feature selection procedure

Open Access
|Aug 2019

References

  1. Mathers C, Lopez A, Stein C, Fat D, Rao C. Deaths and DiseaseBurden by Cause: Global Burden of Disease Estimates for2001 by World Bank Country Groups. 2005 (revised 2005).
  2. Thom T, Haase N, Rosamond W, Howard V. J, Rumsfeld J,Manolio T, Zheng Z. J, Flegal K, O’donnell C, Kittner S. HeartDisease and Stroke Statistics – 2006 update a report from theAmerican Heart Association Statistics Committee and StrokeStatistics Subcommittee, Circulation. 2006; 113(6):e85–e151.https://doi.org/10.1161/circulationaha.105.171600">https://doi.org/10.1161/circulationaha.105.171600
  3. Alberdi A, Aztiria A, Basarab, A. Towards an automatic earlystress recognition system for office environments based onmultimodal measurements: a review, J. Biomed. Inform.2016; 59:49–75. https://doi.org/10.1016/j.jbi.2015.11.007">https://doi.org/10.1016/j.jbi.2015.11.007
  4. Hadhoud MM, Eladawy MI, Farag, A. Computer aideddiagnosis of cardiac arrhythmias, In: The 2006 InternationalConference on Computer Engineering and Systems, IEEE;2006. https://doi.org/10.1109/icces.2006.320458">https://doi.org/10.1109/icces.2006.320458
  5. Shiyovich A, Wolak A, Yacobovich L, Grosbard A, Katz A.Accuracy of diagnosing atrial flutter and atrial fibrillationfrom a surface electrocardiogram by hospital physicians:analysis of data from internal medicine departments, Am. J.Med. Sci., 2010; 340(4):271–275.https://doi.org/10.1097/maj.0b013e3181e73fcf">https://doi.org/10.1097/maj.0b013e3181e73fcf
  6. Wang JS, Chiang WC, Hsu YL, Yang YTC. ECG arrhythmiaclassification using a probabilistic neural network with afeature reduction method. Neurocomputing. 2013; 116:38–45. https://doi.org/10.1016/j.neucom.2011.10.045">https://doi.org/10.1016/j.neucom.2011.10.045
  7. Lin CH. Frequency-domain features for ECG beatdiscrimination using grey relational analysis-based classifier.Comput. Math. Appl. 2008; 55(4):680–690.https://doi.org/10.1016/j.camwa.2007.04.035">https://doi.org/10.1016/j.camwa.2007.04.035
  8. Arif M. Robust electrocardiogram (ECG) beat classificationusing discrete wavelet transform. Physiol. Meas. 2008;29(5)2008. https://doi.org/10.1088/0967-3334/29/5/003">https://doi.org/10.1088/0967-3334/29/5/003
  9. Gramatikov B, Georgiev I. Wavelets as alternative to short-time Fourier transform in signal-averagedelectrocardiography, Med. Biol. Eng. Comput. 1995;33(3):482–487. https://doi.org/10.1007/bf02510534">https://doi.org/10.1007/bf02510534
  10. Li C, Zheng C, Tai C. Detection of ECG characteristic pointsusing wavelet transforms. Biomed. Eng. IEEE Trans. 1995;42(1):21–28. https://doi.org/10.1109/10.362922">https://doi.org/10.1109/10.362922
  11. Zhao QB, Zhang LQ. ECG feature extraction and classificationusing wavelet transform and support vector machines. In:Proceedings of the 2005 International Conference on NeuralNetworks and Brain, 2005; 1(3):1089–1092.https://doi.org/10.1109/icnnb.2005.1614807">https://doi.org/10.1109/icnnb.2005.1614807
  12. Kantardzic M. Data Mining: Concepts, Models, Methods, andAlgorithms. 2nd ed., Wiley-IEEE Press, 2011.
  13. Berkaya SK, Uysal AK, Gunal ES, Ergin S, Gunal S, GulmezogluMB. A survey on ECG analysis, Biomed. Signal Process.Control. 2018; 43:216–235.https://doi.org/10.1016/j.bspc.2018.03.003">https://doi.org/10.1016/j.bspc.2018.03.003
  14. Martis RJ, Acharya UR, Min LC. ECG beat classification usingPCA, LDA, ICA and discrete wavelet transform. Biomed. SignalProcess. Control. 2013; 8(5):437–448.https://doi.org/10.1016/j.bspc.2013.01.005">https://doi.org/10.1016/j.bspc.2013.01.005
  15. Khalaf AF, Owis MI, Yassine IA. A novel technique for cardiacarrhythmia classification using spectral correlation andsupport vector machines. Expert Syst. Appl. 2015; 42:8361–8368. https://doi.org/10.1016/j.eswa.2015.06.046">https://doi.org/10.1016/j.eswa.2015.06.046
  16. Raj S, Ray KC. ECG signal analysis using DCT-based DOST andPSO optimized SVM. IEEE Trans. Instrum. Meas. 2017;66:470–478. https://doi.org/10.1109/tim.2016.2642758">https://doi.org/10.1109/tim.2016.2642758
  17. El-Saadawy H, Tantawi M, Shedeed HA, Tolba MF. Hybridhierarchical method for electrocardiogram heartbeatclassification. IET Signal Processing. 2018; 12(4):506 –513.https://doi.org/10.1049/iet-spr.2017.0108">https://doi.org/10.1049/iet-spr.2017.0108
  18. Martis RJ, Acharya UR, Adeli, H. Current methods inelectrocardiogram characterization. Comput. Biol. Med.2014; 48:133–149.
  19. Martis RJ, Acharya UR, Mandana K, Ray AK, Chakraborty C.Application of principal component analysis to ECG signals forautomated diagnosis of cardiac health. Expert Syst. Appl.2012; 39(14):11792–11800.https://doi.org/10.1016/j.eswa.2012.04.072">https://doi.org/10.1016/j.eswa.2012.04.072
  20. Osowski S, Linh TH. ECG beat recognition using fuzzy hybridneural network. IEEE Trans. Biomed. Eng. 2001; 48(11):1265–1271. https://doi.org/10.1109/10.959322">https://doi.org/10.1109/10.959322
  21. Kutlu Y, Kuntalp DA. multi-stage automatic arrhythmiarecognition and classification system. Comput. Biol. Med.,2011; 41(1):37–45.https://doi.org/10.1016/j.compbiomed.2010.11.003">https://doi.org/10.1016/j.compbiomed.2010.11.003
  22. Das MK, Ari S. ECG beats classification using mixture offeatures. Int. Sch. Res. Not., 2014;178436.https://doi.org/10.1155/2014/178436">https://doi.org/10.1155/2014/178436
  23. Oster J, Joachim B, Sayadi O, Nemati S, Johnson A, Clifford G.semi-supervised ECG beat classification and novelty detectionbased on switching Kalman filters. IEEE Trans. Biomed. Eng.2015; 62(9):2125-2134.https://doi.org/10.1109/tbme.2015.2402236">https://doi.org/10.1109/tbme.2015.2402236
  24. Elhaj FA, Salim N, Harris AR, Swee TT, Ahmed T. Arrhythmiarecognition and classification using combined linear andnonlinear features of ECG signals. computer methods andprogram in biomedicine. Elsevier. 2016; 127:52–63.https://doi.org/10.1016/j.cmpb.2015.12.024">https://doi.org/10.1016/j.cmpb.2015.12.024
  25. Moody GB, Mark GR. The impact of the MIT-BIH Arrhythmiadatabase. IEEE Eng. Med. Biol. 2001; 20(3):45–50.https://doi.org/10.1109/51.932724">https://doi.org/10.1109/51.932724
  26. Martis RJ, Acharya UR, Lim CM, Mandana K, Ray AK,Chakraborty C. Application of higher order cumulant featuresfor cardiac health diagnosis using ECG signals. Int. J. NeuralSyst. 2013; 23(4).https://doi.org/10.1142/s0129065713500147">https://doi.org/10.1142/s0129065713500147
  27. Thomas M, Das MK, Ari S. Automatic ECG arrhythmiaclassification using dual tree complex wavelet based features.International Journal of Electronics and Communications(AEÜ). 2015; 69(4):715-721.https://doi.org/10.1016/j.aeue.2014.12.013">https://doi.org/10.1016/j.aeue.2014.12.013
  28. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A,San Tan R. A deep convolutional neural network model toclassify heartbeats. Computers in Biology and Medicine.2017; 89:389-396.https://doi.org/10.1016/j.compbiomed.2017.08.022">https://doi.org/10.1016/j.compbiomed.2017.08.022
  29. Yang W, Si Y, Wang D, Guo B. Automatic recognition ofarrhythmia based on principal component analysis networkand linear support vector machine. Computers in Biology andMedicine. 2018; 101:22-32.https://doi.org/10.1016/j.compbiomed.2018.08.003">https://doi.org/10.1016/j.compbiomed.2018.08.003
  30. Oh SL, Ng EY, Tan RS, Acharya UR. Automated diagnosis ofarrhythmia using combination of CNN and LSTM techniqueswith variable length heart beats. Computers in Biology andMedicine. 2018; 102:278-287.https://doi.org/10.1016/j.compbiomed.2018.06.002">https://doi.org/10.1016/j.compbiomed.2018.06.002
Language: English
Page range: 47 - 54
Submitted on: Feb 19, 2019
Published on: Aug 20, 2019
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2019 Abdullah Jafari Chashmi, Mehdi Chehel Amirani, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.