References
- Mathers C, Lopez A, Stein C, Fat D, Rao C. Deaths and DiseaseBurden by Cause: Global Burden of Disease Estimates for2001 by World Bank Country Groups. 2005 (revised 2005).
- Thom T, Haase N, Rosamond W, Howard V. J, Rumsfeld J,Manolio T, Zheng Z. J, Flegal K, O’donnell C, Kittner S. HeartDisease and Stroke Statistics – 2006 update a report from theAmerican Heart Association Statistics Committee and StrokeStatistics Subcommittee, Circulation. 2006; 113(6):e85–e151.https://doi.org/10.1161/circulationaha.105.171600
- Alberdi A, Aztiria A, Basarab, A. Towards an automatic earlystress recognition system for office environments based onmultimodal measurements: a review, J. Biomed. Inform.2016; 59:49–75. https://doi.org/10.1016/j.jbi.2015.11.007
- Hadhoud MM, Eladawy MI, Farag, A. Computer aideddiagnosis of cardiac arrhythmias, In: The 2006 InternationalConference on Computer Engineering and Systems, IEEE;2006. https://doi.org/10.1109/icces.2006.320458
- Shiyovich A, Wolak A, Yacobovich L, Grosbard A, Katz A.Accuracy of diagnosing atrial flutter and atrial fibrillationfrom a surface electrocardiogram by hospital physicians:analysis of data from internal medicine departments, Am. J.Med. Sci., 2010; 340(4):271–275.https://doi.org/10.1097/maj.0b013e3181e73fcf
- Wang JS, Chiang WC, Hsu YL, Yang YTC. ECG arrhythmiaclassification using a probabilistic neural network with afeature reduction method. Neurocomputing. 2013; 116:38–45. https://doi.org/10.1016/j.neucom.2011.10.045
- Lin CH. Frequency-domain features for ECG beatdiscrimination using grey relational analysis-based classifier.Comput. Math. Appl. 2008; 55(4):680–690.https://doi.org/10.1016/j.camwa.2007.04.035
- Arif M. Robust electrocardiogram (ECG) beat classificationusing discrete wavelet transform. Physiol. Meas. 2008;29(5)2008. https://doi.org/10.1088/0967-3334/29/5/003
- Gramatikov B, Georgiev I. Wavelets as alternative to short-time Fourier transform in signal-averagedelectrocardiography, Med. Biol. Eng. Comput. 1995;33(3):482–487. https://doi.org/10.1007/bf02510534
- Li C, Zheng C, Tai C. Detection of ECG characteristic pointsusing wavelet transforms. Biomed. Eng. IEEE Trans. 1995;42(1):21–28. https://doi.org/10.1109/10.362922
- Zhao QB, Zhang LQ. ECG feature extraction and classificationusing wavelet transform and support vector machines. In:Proceedings of the 2005 International Conference on NeuralNetworks and Brain, 2005; 1(3):1089–1092.https://doi.org/10.1109/icnnb.2005.1614807
- Kantardzic M. Data Mining: Concepts, Models, Methods, andAlgorithms. 2nd ed., Wiley-IEEE Press, 2011.
- Berkaya SK, Uysal AK, Gunal ES, Ergin S, Gunal S, GulmezogluMB. A survey on ECG analysis, Biomed. Signal Process.Control. 2018; 43:216–235.https://doi.org/10.1016/j.bspc.2018.03.003
- Martis RJ, Acharya UR, Min LC. ECG beat classification usingPCA, LDA, ICA and discrete wavelet transform. Biomed. SignalProcess. Control. 2013; 8(5):437–448.https://doi.org/10.1016/j.bspc.2013.01.005
- Khalaf AF, Owis MI, Yassine IA. A novel technique for cardiacarrhythmia classification using spectral correlation andsupport vector machines. Expert Syst. Appl. 2015; 42:8361–8368. https://doi.org/10.1016/j.eswa.2015.06.046
- Raj S, Ray KC. ECG signal analysis using DCT-based DOST andPSO optimized SVM. IEEE Trans. Instrum. Meas. 2017;66:470–478. https://doi.org/10.1109/tim.2016.2642758
- El-Saadawy H, Tantawi M, Shedeed HA, Tolba MF. Hybridhierarchical method for electrocardiogram heartbeatclassification. IET Signal Processing. 2018; 12(4):506 –513.https://doi.org/10.1049/iet-spr.2017.0108
- Martis RJ, Acharya UR, Adeli, H. Current methods inelectrocardiogram characterization. Comput. Biol. Med.2014; 48:133–149.
- Martis RJ, Acharya UR, Mandana K, Ray AK, Chakraborty C.Application of principal component analysis to ECG signals forautomated diagnosis of cardiac health. Expert Syst. Appl.2012; 39(14):11792–11800.https://doi.org/10.1016/j.eswa.2012.04.072
- Osowski S, Linh TH. ECG beat recognition using fuzzy hybridneural network. IEEE Trans. Biomed. Eng. 2001; 48(11):1265–1271. https://doi.org/10.1109/10.959322
- Kutlu Y, Kuntalp DA. multi-stage automatic arrhythmiarecognition and classification system. Comput. Biol. Med.,2011; 41(1):37–45.https://doi.org/10.1016/j.compbiomed.2010.11.003
- Das MK, Ari S. ECG beats classification using mixture offeatures. Int. Sch. Res. Not., 2014;178436.https://doi.org/10.1155/2014/178436
- Oster J, Joachim B, Sayadi O, Nemati S, Johnson A, Clifford G.semi-supervised ECG beat classification and novelty detectionbased on switching Kalman filters. IEEE Trans. Biomed. Eng.2015; 62(9):2125-2134.https://doi.org/10.1109/tbme.2015.2402236
- Elhaj FA, Salim N, Harris AR, Swee TT, Ahmed T. Arrhythmiarecognition and classification using combined linear andnonlinear features of ECG signals. computer methods andprogram in biomedicine. Elsevier. 2016; 127:52–63.https://doi.org/10.1016/j.cmpb.2015.12.024
- Moody GB, Mark GR. The impact of the MIT-BIH Arrhythmiadatabase. IEEE Eng. Med. Biol. 2001; 20(3):45–50.https://doi.org/10.1109/51.932724
- Martis RJ, Acharya UR, Lim CM, Mandana K, Ray AK,Chakraborty C. Application of higher order cumulant featuresfor cardiac health diagnosis using ECG signals. Int. J. NeuralSyst. 2013; 23(4).https://doi.org/10.1142/s0129065713500147
- Thomas M, Das MK, Ari S. Automatic ECG arrhythmiaclassification using dual tree complex wavelet based features.International Journal of Electronics and Communications(AEÜ). 2015; 69(4):715-721.https://doi.org/10.1016/j.aeue.2014.12.013
- Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A,San Tan R. A deep convolutional neural network model toclassify heartbeats. Computers in Biology and Medicine.2017; 89:389-396.https://doi.org/10.1016/j.compbiomed.2017.08.022
- Yang W, Si Y, Wang D, Guo B. Automatic recognition ofarrhythmia based on principal component analysis networkand linear support vector machine. Computers in Biology andMedicine. 2018; 101:22-32.https://doi.org/10.1016/j.compbiomed.2018.08.003
- Oh SL, Ng EY, Tan RS, Acharya UR. Automated diagnosis ofarrhythmia using combination of CNN and LSTM techniqueswith variable length heart beats. Computers in Biology andMedicine. 2018; 102:278-287.https://doi.org/10.1016/j.compbiomed.2018.06.002