Have a personal or library account? Click to login
Dielectrical properties of living epidermis and dermis in the frequency range from 1 kHz to 1 MHz Cover

Dielectrical properties of living epidermis and dermis in the frequency range from 1 kHz to 1 MHz

Open Access
|Jul 2019

References

  1. I. Nicander, M. Nyren, L. Emtestam, S. Ollmar, Baseline electrical impedance measurements at various skin sites related to age and sex, Skin Research and Technology 3 (4) (1997) 252-258. https://doi.org/10.1111/j.1600-0846.1997.tb00194.x">https://doi.org/10.1111/j.1600-0846.1997.tb00194.x
  2. P. Åberg, U. Birgersson, P. Elsner, P. Mohr, S. Ollmar, Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma, Experimental Dermatology 20 (8) (2011) 648-652. https://doi.org/10.1111/j.1600-0625.2011.01285.x">https://doi.org/10.1111/j.1600-0625.2011.01285.x
  3. S. Gabriel, R. Lau, C. Gabriel, The dielectric properties of biological tissues: iii. parametric models for the dielectric spectrum of tissues, Physics in Medicine and Biology 41 (11) (1996) 2271. https://doi.org/10.1088/0031-9155/41/11/003">https://doi.org/10.1088/0031-9155/41/11/003
  4. D. Miklavčič, N. Pavšelj, F. X. Hart, Electric properties of tissues, Wiley Encyclopedia of Biomedical Engineering. https://doi.org/10.1002/9780471740360.ebs0403">https://doi.org/10.1002/9780471740360.ebs0403
  5. T. Yamamoto, Y. Yamamoto, Electrical properties of the epidermal stratum corneum, Medical and Biological Engineering 14 (2) (1976) 151-158. https://doi.org/10.1007/BF02478741">https://doi.org/10.1007/BF02478741
  6. U. Birgersson, E. Birgersson, P. Åberg, I. Nicander, S. Ollmar, Non-invasive bioimpedance of intact skin: mathematical modeling and experiments, Physiological Measurement 32 (1) (2010) 1. https://doi.org/10.1088/0967-3334/32/1/001">https://doi.org/10.1088/0967-3334/32/1/001
  7. A. Tavernier, M. Dierickx, M. Hinsenkamp, Tensors of dielectric permittivity and conductivity of in vitro human dermis and epidermis, Bioelectrochemistry and Bioenergetics 30 (1993) 65-72. https://doi.org/10.1016/0302-4598(93)80063-Z">https://doi.org/10.1016/0302-4598(93)80063-Z
  8. A. Tavernier, M. Dierickx, M. Hinsenkamp, Conductivity and dielectric permittivity of dermis and epidermis in nutrient liquid saturation, in: Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE, Vol. 1, IEEE, 1992, pp. 274-275. https://doi.org/10.1109/IEMBS.1992.5760961">https://doi.org/10.1109/IEMBS.1992.5760961
  9. U. Birgersson, E. Birgersson, I. Nicander, S. Ollmar, A methodology for extracting the electrical properties of human skin, Physiological Measurement 34 (6) (2013) 723. https://doi.org/10.1088/0967-3334/34/6/723">https://doi.org/10.1088/0967-3334/34/6/723
  10. B. Tsai, H. Xue, E. Birgersson, S. Ollmar, U. Birgersson, Analysis of a mechanistic model for non-invasive bioimpedance of intact skin, Journal of Electrical Bioimpedance 8 (1) (2017) 84-96. 10.5617/jeb.4826">http://dx.doi.org/10.5617/jeb.4826
  11. B. Tsai, E. Birgersson, U. H. Birgersson, Mechanistic multilayer model for non-invasive bioimpedance of intact skin, Journal of electrical bioimpedance 9 (2018) 31-38. https://doi.org/10.2478/joeb-2018-0006">https://doi.org/10.2478/joeb-2018-0006
  12. M. Huzaira, F. Rius, M. Rajadhyaksha, R. R. Anderson, S. González, Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopy, Journal of Investigative Dermatology 116 (6) (2001) 846-852. https://doi.org/10.1046/j.0022-202x.2001.01337.x">https://doi.org/10.1046/j.0022-202x.2001.01337.x
  13. S. Neerken, G. W. Lucassen, M. A. Bisschop, E. Lenderink, T. A. Nuijs, Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography, Journal of Biomedical Optics 9 (2) (2004) 274-281. https://doi.org/10.1117/1.1645795">https://doi.org/10.1117/1.1645795
  14. T. Gambichler, R. Matip, G. Moussa, P. Altmeyer, K. Hoffmann, In vivo data of epidermal thickness evaluated by optical coherence tomography: effects of age, gender, skin type, and anatomic site, Journal of Dermatological Science 44 (3) (2006) 145-152. https://doi.org/10.1016/j.jdermsci.2006.09.008">https://doi.org/10.1016/j.jdermsci.2006.09.008
  15. G. Josse, J. George, D. Black, Automatic measurement of epidermal thickness from optical coherence tomography images using a new algorithm, Skin Research and Technology 17 (3) (2011) 314-319. https://doi.org/10.1111/j.1600-0846.2011.00499.x">https://doi.org/10.1111/j.1600-0846.2011.00499.x
  16. T. Tsugita, T. Nishijima, T. Kitahara, Y. Takema, Positional differences and aging changes in Japanese woman epidermal thickness and corneous thickness determined by OCT (optical coherence tomography), Skin Research and Technology 19 (3) (2013) 242-250. https://doi.org/10.1111/srt.12021">https://doi.org/10.1111/srt.12021
  17. C. Trojahn, G. Dobos, C. Richter, U. Blume-Peytavi, J. Kottner, Measuring skin aging using optical coherence tomography in vivo: a validation study, Journal of Biomedical Optics 20 (4) (2015) 045003. https://doi.org/10.1117/1.JBO.20.4.045003">https://doi.org/10.1117/1.JBO.20.4.045003
  18. K. A. Holbrook, G. F. Odland, Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis, Journal of Investigative Dermatology 62 (4) (1974) 415-422. https://doi.org/10.1111/1523-1747.ep12701670">https://doi.org/10.1111/1523-1747.ep12701670
  19. D. A. Schwindt, K. P.Wilhelm, H. I. Maibach, Water diffusion characteristics of human stratum corneum at different anatomical sites in vivo, Journal of Investigative Dermatology 111 (3) (1998) 385-389. https://doi.org/10.1046/j.1523-1747.1998.00321.x">https://doi.org/10.1046/j.1523-1747.1998.00321.x
  20. K. Sauermann, S. Clemann, S. Jaspers, T. Gambichler, P. Altmeyer, K. Hoffmann, J. Ennen, Age related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo, Skin Research and Technology 8 (1) (2002) 52-56. https://doi.org/10.1046/j.0909-752x.2001.10297.x">https://doi.org/10.1046/j.0909-752x.2001.10297.x
  21. M. Egawa, T. Hirao, M. Takahashi, In vivo estimation of stratum corneum thickness from water concentration profiles obtained with raman spectroscopy, Acta Derm Venereol 87 (1) (2007) 4-8. https://doi.org/10.2340/00015555-0183">https://doi.org/10.2340/00015555-0183
  22. J. Crowther, A. Sieg, P. Blenkiron, C. Marcott, P. Matts, J. Kaczvinsky, A. Rawlings, Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo, British journal of Dermatology 159 (3) (2008) 567-577. https://doi.org/10.1111/j.1365-2133.2008.08703.x">https://doi.org/10.1111/j.1365-2133.2008.08703.x
  23. L. Binder, S. SheikhRezaei, A. Baierl, L. Gruber, M. Wolzt, C. Valenta, Confocal raman spectroscopy: In vivo measurement of physiological skin parameters: a pilot study, Journal of Dermatological Science 88 (3) (2017) 280-288. https://doi.org/10.1016/j.jdermsci.2017.08.002">https://doi.org/10.1016/j.jdermsci.2017.08.002
  24. C. Tan, B. Statham, R. Marks, P. Payne, Skin thickness measurement by pulsed ultrasound; its reproducibility, validation and variability, British Journal of Dermatology 106 (6) (1982) 657-667. https://doi.org/10.1111/j.1365-2133.1982.tb14702.x">https://doi.org/10.1111/j.1365-2133.1982.tb14702.x
  25. K. Hoffmann, M. Stuücker, T. Dirschka, S. Goörtz, S. El-Gammal, K. Dirting, A. Hoffmann, P. Altmeyer, Twenty MHz B-scan sonography for visualization and skin thickness measurement of human skin, Journal of the European Academy of Dermatology and Venereology 3 (3) (1994) 302313. https://doi.org/10.1111/j.1468-3083.1994.tb00367.x">https://doi.org/10.1111/j.1468-3083.1994.tb00367.x
  26. Y. Lee, K. Hwang, Skin thickness of Korean adults, Surgical and radiologic anatomy 24 (3-4) (2002) 183-189. 10.1007/s00276-002-0034-5">http://dx.doi.org/10.1007/s00276-002-0034-5
  27. Moore, M. Lunt, B. McManus, M. Anderson, A. Herrick, Seventeen-point dermal ultrasound scoring system - a reliable measure of skin thickness in patients with systemic sclerosis, Rheumatology 42 (12) (2003) 1559-1563. https://doi.org/10.1093/rheumatology/keg435">https://doi.org/10.1093/rheumatology/keg435
  28. J. D. Jackson, Classical electrodynamics, Wiley, 1999, Ch. Appendix, pp. 780-781. http://as.wiley.com/WileyCDA/WileyTitle/productCd-047130932X.html
  29. Matlab, Matlab r2018a (2018). URL www.mathworks.com/products/matlab
  30. D. Dean, T. Ramanathan, D. Machado, R. Sundararajan, Electrical impedance spectroscopy study of biological tissues, Journal of Electrostatics 66 (3) (2008) 165-177. https://doi.org/10.1016/j.elstat.2007.11.005">https://doi.org/10.1016/j.elstat.2007.11.005
  31. K. Sasaki, K. Wake, S. Watanabe, Measurement of the dielectric properties of the epidermis and dermis at frequencies from 0.5 GHz to 110 GHz, Physics in Medicine & Biology 59 (16) (2014) 4739. https://doi.org/10.1088/0031-9155/59/16/4739">https://doi.org/10.1088/0031-9155/59/16/4739
  32. R. Pethig, D. B. Kell, The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology, Physics in Medicine and Biology 32 (8) (1987) 933. https://doi.org/10.1088/0031-9155/32/8/001">https://doi.org/10.1088/0031-9155/32/8/001
  33. H. P. Schwan, Electrical properties of tissue and cell suspensions., Advances in Biological and Medical Physics 5 (1957) 147. https://doi.org/10.1016/B978-1-4832-3111-2.50008-0">https://doi.org/10.1016/B978-1-4832-3111-2.50008-0
  34. Ø. G. Martinsen, S. Grimnes, Bioimpedance and bioelectricity basics, Academic press, 2014, Ch. 3, p. 73. https://doi.org/10.1016/C2012-0-06951-7">https://doi.org/10.1016/C2012-0-06951-7
  35. Ø. G. Martinsen, S. Grimnes, Facts and myths about electrical measurement of stratum corneum hydration state, Dermatology 202 (2) (2001) 87-89. https://doi.org/10.1159/000051604">https://doi.org/10.1159/000051604
  36. Ø. Martinsen, S. Grimnes, On using single frequency electrical measurements for skin hydration assessment, Innovation et Technologie en Biologie et Médecine 19 (1998) 395-400.
  37. Ø. Martinsen, S. Grimnes, O. Sveen, Dielectric properties of some keratinised tissues. part 1: Stratum corneum and nail in situ, Medical and Biological Engineering and Computing 35 (3) (1997) 172-176. https://doi.org/10.1007/BF02530033">https://doi.org/10.1007/BF02530033
  38. S. Whitaker, The method of volume averaging, Vol. 13, Springer Science & Business Media, 2013. https://doi.org/10.1007/978-94-017-3389-2">https://doi.org/10.1007/978-94-017-3389-2
  39. T. Zhang, E. Birgersson, J. Luther, A spatially smoothed device model for organic bulk heterojunction solar cells, Journal of Applied Physics 113 (17) (2013) 174505. https://doi.org/10.1063/1.4803542">https://doi.org/10.1063/1.4803542
  40. T. Zhang, E. Birgersson, J. Luther, Modeling the structure-property relations in pillar-structured organic donor/acceptor solar cells, Organic Electronics 15 (11) (2014) 2742-2748. https://doi.org/10.1016/j.orgel.2014.07.036">https://doi.org/10.1016/j.orgel.2014.07.036
  41. H. Xue, R. Stangl, E. Birgersson, A spatially smoothed device model for meso-structured perovskite solar cells, Journal of Applied Physics, 124, 193103 (2018). https://doi.org/10.1063/1.5045379">https://doi.org/10.1063/1.5045379
Language: English
Page range: 14 - 23
Submitted on: Nov 28, 2018
Published on: Jul 2, 2019
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2019 B. Tsai, H. Xue, E. Birgersson, S. Ollmar, U. Birgersson, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.