Have a personal or library account? Click to login
Applications of bioimpedance measurement techniques in tissue engineering Cover

Applications of bioimpedance measurement techniques in tissue engineering

By: M. Amini,  J. Hisdal and  H. Kalvøy  
Open Access
|Dec 2018

References

  1. Langer R, Vacanti JP. Advances in tissue engineering. J Pediatr Surg. 2016;51(1):8-12. https://doi.org/10.1016/j.jpedsurg.2015.10.022
  2. Dzobo K. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine: A Review Article. Stem Cells International. 2018. https://doi.org/10.1155/2018/2495848
  3. Shafiee A, Atala A. Tissue Engineering: Toward a New Era of Medicine. Annu Rev Med. 2017;68:29-40. https://doi.org/10.1146/annurev-med-102715-092331
  4. Tabata Y. Biomaterial technology for tissue engineering applications. J R Soc Interface. 2009;6(S311). https://doi.org/10.1098/rsif.2008.0448.focus
  5. Appel AA, Anastasio MA, Larson JC, Brey EM. Imaging challenges in biomaterials and tissue engineering. Biomaterials. 2013;34(28):6615-30. https://doi.org/10.1016/j.biomaterials.2013.05.033
  6. Nam SY, Suggs LJ, Emelianov SY. Imaging strategies for tissue engineerig applications. Tissue Engineering. 2015;21(1).
  7. Grimnes S, Martinsen ØG. Bioimpedance & Bioelectricity Basics. 3rd ed: Elsevier Science; 2014.
  8. Pethig R, Kell DB. The passive electrical properties of biological systems: Their significance in physiology, biophysics and biotechnology. Phys Med Biol. 1987;32(933). https://doi.org/10.1088/0031-9155/32/8/001
  9. Miklavcic D, Pavselj N, Hart FX. Electric Properties of Tissues. Wiley Encyclopedia of Biomedical Engineering. 2006.
  10. Schwan HP. Electrical properties of tissue and cell suspensions: Mechanisms and models. Proc IEEE Adv Biol Med Soc. 2002;1:A70-A1.
  11. Kyle UG, Bosaeus I, De Lorenzo AD. Bioelectrical impedance analysis part I: review of principles and methods. Clinical Nutrition. 2004;23:1226-43. https://doi.org/10.1016/j.clnu.2004.06.004
  12. Alberts B, Johnson A, Lewis J. Transport into the cell from the plasma membrane: Endocytosis. Molecular Biology of the Cell. 4th ed: Garland Science; 2002.
  13. Asami K. Characterization of heterogeneous systems by dielectric spectroscopy. Prog Polym Sci. 2002;27:1617-59. https://doi.org/10.1016/S0079-670002)00015-1
  14. Heileman K, Daoud J, Tabrizian M. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Biosens Bioelectron. 2013;49:348-59. https://doi.org/10.1016/j.bios.2013.04.017
  15. Riu PJ. Comments on "Bioelectrical parameters of the whole human body obtained through bioelectrical impedance analysis". Bioelectromagnetics. 2004;25:69-71. https://doi.org/10.1002/bem.10190
  16. Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol. 1996;41:2231-49. https://doi.org/10.1088/0031-9155/41/11/001
  17. Martinsen ØG, Grimnes S, Schwan HP. Interface phenomena and dielectric properties of biological tissue. Encyclopedia of Surface and Colloid Science. 2002;20:2643-53.
  18. Dean DA, Ramanathan T, Machado D, Sundararajan R. Electrical Impedance Spectroscopy Study of Biological Tissues. J Electrostat. 2008;66(3-4):165-77. https://doi.org/10.1016/j.elstat.2007.11.005
  19. Kwon H, McEwan AL, Oh TI, Farooq A, Woo EJ, Seo JK. A local region of interest imaging method for electrical impedance tomography with internal electrodes. Comput Math Methods Med. 2013;9. https://doi.org/10.1155/2013/964918
  20. Seo JK, Bera TK, Kwon H, Sadleir RJ. Effective Admittivity of Biological Tissues as a Coefficient of Elliptic PDE. Computational and Mathematical Methods in Medicine. 2013;2. https://doi.org/10.1155/2013/353849
  21. Schwan HP. Electrical properties of tissues and cell suspensions Advanced Phys Med Biol. 1957;5:147-209.
  22. El Khaled D, Castellano NN, Gazquez JA, Perea-Moreno A-J. Dielectric Spectroscopy in Biomaterials: Agrophysics. A Review. Materials. 2016;9(310). https://doi.org/10.3390/ma9050310
  23. Zajicek R, Oppl L, Vrba J. Broadband Measurement of Complex Permittivity Using Reflection Method and Coaxial Probes Radioengineering. 2008;17(1).
  24. Vorlicek J, Oppl L, Vrba J, editors. Measurement of Complex Permittivity of Biological Tissues. Progress In Electromagnetics Research Symposium Proceeding; 2010; Cambridge, USA.
  25. Foster KR, Schwan HP. Dielectric properties of tissues and biological materials: a critical review. Critical Reviews in Biomedical Engineering. 1989;17(1):25-104.
  26. Markx GH. The use of electric fields in tissue engineering. A review. Organogenesis. 2008;4(1):11-7. https://doi.org/10.4161/org.5799
  27. Pliquett U, Prausnitz MR. Electrical impedance spectroscopy for rapid and non-invasive analysis of skin electroporation. In: Electrically Mediated Delivery of Molecules to Cells, Electrochemotherapy, Electrogenetherapy and Transdermal Delivery by Electroporation Totowa, NJ: Humana Press; 2000. https://doi.org/10.1385/1-59259-080-2377
  28. Ducommun P, Kadouri A, Von Stockar U, Marison I. On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. Biotechnol Bioeng. 2002;77:316-23. https://doi.org/10.1002/bit.1197
  29. Justice C, Brix A, Freimark D, Kraume M, Pfromm P, Eichenmueller B. Process control in cell culture technology using dielectric spectroscopy. . Biotechnol. 2011;29:391-401. https://doi.org/10.1016/j.biotechadv.2011.03.002
  30. Hildebrandt C, Büth H, Cho S, Thielecke H. Detection of the osteogenic differentiation of mesenchymal stem cells in 2D and 3D cultures by electrochemical impedance spectroscopy. J Biotechnol. 2010;148(1):83-90. https://doi.org/10.1016/j.jbiotec.2010.01.007
  31. Wu H, Zhou W, Yang Y, Jia J, Bagnaninchi P. Exploring the Potential of Electrical Impedance Tomography for Tissue Engineering Applications. Materials. 2018;11(6):31. https://doi.org/10.3390/ma11060930
  32. Khalil SF, Mohktar MS, Ibrahim F. The Theory and Fundamentals of Bioimpedance Analysis in Clinical Status Monitoring and Diagnosis of Diseases. A Review. Sensors. 2014;14.
  33. Canali C, Heiskanen A, Martinsen ØG, Mohanty S, Dufva M, Wolff A, Emneus J. Impedance-Based Monitoring for Tissue Engineering Applications. In: Simini F, Pedro BF. editor. II Latin American Conference on Bioimpedance. IFMBE Proceedings. 54. New York: Springer; 2016. p. 36-9. https://doi.org/10.1007/978-981-287-928-8-10
  34. Yúfera A, Rueda A. A Method for Bioimpedance Measure With Four- and Two-Electrode Sensor Systems. 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada; 2008. https://doi.org/10.1109/IEMBS.2008.4649662
  35. Carvalho TS, Fonseca AL, Coutinho ABB, Jotta B, Pino AV, Souza MN. Comparison of bipolar and tetrapolar techniques in bioimpedance measurement. XXIV Congresso Brasileiro de Engenharia Biomédica – CBEB; 2014.
  36. Bragos R, Sarro E, Fontova A, Soley A, Cairo J, Bayes-Genis A, et al. Four versus two-electrode measurement strategies for cell growing and differentiation monitoring using electrical impedance spectroscopy. Annual International Conference of the IEEE Engineering in Medicine & Biology Society. 2006;1:2106-9. https://doi.org/10.1109/IEMBS.2006.260287
  37. Sarro E, Fontova A, Soley A, Cairo J, Bayes-Genis A, Rosell J, et al. Four electrode EIS measurement on interdigitated microelectrodes for adherent cell growing and differentiation monitoring. In: Scharfetter H, Merwa R, editors. 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography 2007. IFMBE Proceedings. 17. New York: Springer; 2007. p. 77. https://doi.org/10.1007/978-3-540-73841-1-23
  38. Kalvøy H, Frich L, Grimnes S, Martinsen ØG. Impedance-based tissue discrimination for needle guidance. Physiological Measurements. 2009;30.
  39. Radke SM, Alocilja EC. Design and Fabrication of a Microimpedance Biosensor for Bacterial Detection. IEEE Sensor Journal. 2004;4:434-40. https://doi.org/10.1109/JSEN.2004.830300
  40. Giaever I. Use of Electric Fields to Monitor the Dynamical Aspect of Cell Behaviour in Tissue Cultures. IEEE Transaction on Biomedical Engineering. 1986; BME 33:242-7. https://doi.org/10.1109/TBME.1986.325896
  41. Linderholm P, Bertsch A, Renaud P. Resistivity probing of multi-layered tissue phantoms using microelectrodes. Physiol Meas. 2004;25:645-58. https://doi.org/10.1088/0967-3334/25/3/005
  42. Huang X. Simulation of Microelectrode Impedance Changes Due to Cell Growth. IEEE Sensors Journal. 2004;4:576-83. https://doi.org/10.1109/JSEN.2004.831302
  43. Canali C, Mohanty S, Heiskanen A. Impedance Spectroscopic Characterisation of Porosity in 3D Cell Culture Scaffolds with Different Channel Networks. Electroanalysis. 2015;27(1):193-9. https://doi.org/10.1002/elan.201400413
  44. Ragheb T, Geddes LA. The Polarization Impedance of Common Electrode Metals Operated at Low Current Density Annals of Biomedical Engineering. 1991;19:151-63.
  45. Geddes LA, Roeder R. Criteria for the selection of materials for implanted electrodes. Annals of Biomedical Engineering. 2003;31(7):879-90. https://doi.org/10.1114/1.1581292
  46. Holder D. Electrical Impedance Tomography: Methods, History and Applications. Bristol: Institute of Physics Publishing; 2005.
  47. Kalvøy H, Johnsen GK, Martinsen ØG, Grimnes S. New Method for Separation of Electrode Polarization Impedance from Measured Tissue Impedance. The Open Biomedical Engineering Journal. 2011;5:8-13. https://doi.org/10.2174/1874120701105010008
  48. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103(4):655-63. https://doi.org/10.1002/bit.22361
  49. Mulhall HJ, Hughes MP, Kazmi B, Lewis MP, Labeed FH. Epithelial cancer cells exhibit different electrical properties when cultured in 2D and 3D environments. Biochim Biophys Acta. 2013;1839(11):5136-41. https://doi.org/10.1016/j.bbagen.2013.07.008
  50. Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE. Microengineered physiological biomimicry: organs-on-chips. Lab Chip. 2012;12(12):2156-64. https://doi.org/10.1039/c2lc40089h
  51. Zhang B, Radisic M. Organ-on-a-chip devices advance to market. Lab Chip. 2017;17(14):2395-420. https://doi.org/10.1039/C6LC01554A
  52. Kieninger J, Weltin A, Flamm H, Urban A. Microsensor systems for cell metabolism – from 2D culture to organ-on-chip. Lab Chip. 2018;18:1274-91. https://doi.org/10.1039/C7LC00942A
  53. Wu HC, Yang YJ, Bagnaninchi PO, Jia JB. Electrical impedance tomography for real-time and label-free cellular viability assays of 3D tumour spheroids. Analyst. 2018;143(17):4189-98. https://doi.org/10.1039/C8AN00729B
  54. Lee SM, Han N, Lee R, Choi IH, Park YB, Shin JS, et al. Real-time monitoring of 3D cell culture using a 3D capacitance biosensor. Biosensors and Bioelectronics. 2016;77:56-61. https://doi.org/10.1016/j.bios.2015.09.005
  55. Knight E, Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro: Reveiw Article. J Anat. 2015;227:746-56. https://doi.org/10.1111/joa.12257
  56. Abbott A. Cell culture: Biology's new dimension. Nature. 2003;424:870-2. https://doi.org/10.1038/424870a
  57. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix Elasticity Directs Stem Cell Lineage Specification. J Biomech Eng. 2006;126:677-89. https://doi.org/10.1016/j.cell.2006.06.044
  58. Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7:211-24. https://doi.org/10.1038/nrm1858
  59. Antoni D, Burckel H, Josset E, Noel G. Three-Dimensional cell culture: A breakthrough in Vivo. Int J Mol Sci. 2015;16(3):5517-27. https://doi.org/10.3390/ijms16035517
  60. Zhang Y. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. . Biomaterials. 2009;30:4021-8. https://doi.org/10.1016/j.biomaterials.2009.04.005
  61. Halfter W. New concepts in basement membrane biology. FEBS J. 2015;282:4466-79. https://doi.org/10.1111/febs.13495
  62. Lei KF. Review on Impedance Detection of Cellular Responses in Micro/Nano Environment Micromachines. 2014;5:1-12.
  63. Smith LE, Smallwood R, Macneil S. A comparison of imaging methodologies for 3D tissue engineering. Microsc Res Tech. 2010;73(12):1123-33. https://doi.org/10.1002/jemt.20859
  64. Andersson H, Van den Berg A. Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities. Lab Chip. 2004;4(2). https://doi.org/10.1039/b314469k
  65. Erickson D, Li D. Integrated microfluidic devices: A Review. Analytica Chimica Acta 2004;507:11-26. https://doi.org/10.1016/j.aca.2003.09.019
  66. Huh D, Kim HJ, Fraser JP. Microfabrication of Human Organs-on-Chips. Nat Protoc. 2013;8:2135-57. https://doi.org/10.1038/nprot.2013.137
  67. Sung JH, Esch MB, Prot JM. Microfabricated Mammalian Organ Systems and Their Integration into Models of Whole Animals and Humans. Lab Chip. 2013;13:1201-12. https://doi.org/10.1039/c3lc41017j
  68. Stancescu M, Molnar P, McAleer CW, al. e. A phenotypic in vitro model for the main determinants of human whole heart function. Biomaterials. 2015;60:20-30. https://doi.org/10.1016/j.biomaterials.2015.04.035
  69. Oleaga C, Bernabini C, Smith AS, al. e. Mulit-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep. 2016;6(20030).
  70. Sakolish CM. Modeling Barrier Tissues in Vitro: Methods, Achievements and challenges. The Lancet. 2016;5:30-9.
  71. Ostrovidov S, Sakai Y, Fujii T. Integration of a pump and an electrical sensor into a membrane-based PDMS microbioreactor for cell culture and drug testing. Biomed Microdevices. 2011;13(5):847-64. https://doi.org/10.1007/s10544-011-9555-1
  72. Meyvantsson I, Warrick JW, Hayes S, Skoien A, Beebe DJ. Automated cell culture in high density tubeless microfluidic device arrays Lab on a Chip. 2008(5).
  73. Zervantonakis IK. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Biomicrofluidics. 2011;5. https://doi.org/10.1063/1.3553237
  74. Li X, Valadez A, Zuo P, Nie Z. Microfluidic 3D cell culture: Potential application for tissue-based bioassays. Bioanalysis. 2012;4:1509-25. https://doi.org/10.4155/bio.12.133
  75. Asphahani F, Zhang M. Cellular impedance biosensors for drug screening and toxin detection. Analyst. 2007;132(9):835-41. https://doi.org/10.1039/b704513a
  76. Kilic T, Navaee F, Stradolini F, Renaud P, Carrara S. Organs-on-chip monitoring: sensors and other strategies. Review Article. Microphysiological Systems. 2018;2(5).
  77. Huang HH, Pan SJ, Lu FH. Surface electrochemical impedance in situ monitoring of cell-cultured titanium with a nano-network surface layer. Scripta Materialia. 2005;53(9):1037-42. https://doi.org/10.1016/j.scriptamat.2005.07.006
  78. Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012;12(12):2165-74. https://doi.org/10.1039/c2lc40074j
  79. Daza P, Olmo A, Canete D, Yufera A. Monitoring living cell assays with bio-impedance sensors. Sensors and Actuators B: Chemical. 2013;176:605-10. https://doi.org/10.1016/j.snb.2012.09.083
  80. Serrano JA, Pérez P, Maldonado A, Martín M, Olmo A, Daza P, et al., editors. Practical Characterization of cell-electrode electrical models in bioimpedance assays In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC); 2018. https://doi.org/10.5220/0006712601000108
  81. Ducommun P, Ruffieux PA, Kadouri A. Process Development in a Packed Bed Bioreactor. Animal Cell Technology: From Target to Market2002.
  82. Gloeckner H, Jonuleit T, Lemke HD. Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar Blue. Journal of Immunological Methods. 2001;252:131-8. https://doi.org/10.1016/S0022-175901)00347-7
  83. K'Owino IO, Sadik OA. Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis. 2005;17(23):2101-13. https://doi.org/10.1002/elan.200503371
  84. Bürgel SC, Diener L, Frey O, Kim JY, Hierlemann A. Automated, Multiplexed Electrical Impedance Spectroscopy Platform for Continuous Monitoring of Microtissue Spheroids. Anal Chem. 2016;88(22). https://doi.org/10.1021/acs.analchem.6b01410
  85. Schmid YRF, Burgel SC. Electrical Impedance Spectroscopy for Microtissue Spheroid Analysis in Hanging-Drop Networks. ACS Sens. 2016;1(8).
  86. Krommenhoek EE. Monitoring of yeast cell concentration using a micromachnined impedance sensor. Sensors and actuators B: Chemical. 2006;115(1). https://doi.org/10.1016/j.snb.2005.09.028
  87. Sharma R. On-chip microelectrode impedance analysis of mammalian cell viability during biomanufacturing. Biomicrofluidics. 2014;8(5). https://doi.org/10.1063/1.4895564
  88. Stolwijk J, Hartmann C, Balani P, Albermann S, Keese C. Impedance analysis of adherent cells after in situ electroporation: non-invasive monitoring during intracellular manipulations. BiosensBioelectron. 2011 26:4720-7. https://doi.org/10.1016/j.bios.2011.05.033
  89. Senez V, Lennon E, Ostrovidov S, Yamamoto T, Fujita H, Sakai Y, et al. Integrated 3-D Silicon Electrodes for Electrochemical Sensing in Microfluidic Environments: Application to Single-Cell Characterization IEEE Sens J. 2008:548-57. https://doi.org/10.1109/JSEN.2008.918948
  90. Rissanen AK, editor Monitoring Capillary Endothelial Cell Culture and Capillary Formation in a Microdevice by Impedance Spectroscopy Measurements. . Proceedings of the 3rd Annual International IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology; 2005. https://doi.org/10.1109/MMB.2005.1548426
  91. Linderholm P, Braschler T, Vannod J, Barrandon Y, Brouard M, Renaud P. Two-dimensional impedance imaging of cell migration and epithelial stratification. Lab Chip. 2006;6:1155-62. https://doi.org/10.1039/b603856e
  92. Gawad S. Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab on a Chip. 2004(3).
  93. Jang L-S, Wang M-H. Microfluidic device for cell capture and impedance measurement. Biomedical Microdevices. 2007;9:737-43. https://doi.org/10.1007/s10544-007-9084-0
  94. Sun T, Tsuda S, Zauner KP, Morgan H. On-chip electrical impedance tomography for imaging biological cells. Biosens Bioelectron. 2010;25:1109-15. https://doi.org/10.1016/j.bios.2009.09.036
  95. Malleo D. Continuous differential impedance spectroscopy of single cells. Microfluidics and Nanofluidics. 2010;9(2-3). https://doi.org/10.1007/s10404-009-0534-2
  96. Schade-Kampmann G, Huwiler A, Hebeisen M, Hessler T, Di Berardino M. On-chip non-invasive and label-free cell discrimination by impedance spectroscopy. Cell Proliferation in basic and clinical sciences. 2008;41(5).
  97. Holmes D. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry Lab on a Chip. 2009(20).
  98. Keese CR, Wegener J, Walker SR, Giaever I. Electrical wound-healing assay for cells in vitro. PNAS 2004;101(6). https://doi.org/10.1073/pnas.0307588100
  99. Wang P, Liu Q. Cell-Based Biosensors: Principles and Applications. 2010.
  100. Fricke H, Morse S. The electrical resistance and capacity of blood for frequencies between 800 Hz and 4.5 MHz. J Gen Physiol. 1925;9:153-67. https://doi.org/10.1085/jgp.9.2.153
  101. Wang M. Electrode models in electrical impedance tomography. J Zhejiang Univ Sci A. 2005;6:1386-93. https://doi.org/10.1631/jzus.2005.A1386
  102. Daniels JS, Pourmand N. Label-Free Impedance Biosensors: Opportunities and Challenges: A Review. Electroanalysis. 2007;19(12):1239-57. https://doi.org/10.1002/elan.200603855
  103. Bera TK, Nagaraju J. Electrical Impedance Spectroscopic Studies on Broiler Chicken Tissue Suitable for the Development of Practical Phantoms in Multifrequency EIT Journal of Electrical Bioimpedance. 2011;2:48-63. https://doi.org/10.5617/jeb.174
  104. Bera TK. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review. J Med Eng. 2014;2014.
  105. Bouchaala D, Kanoun O, Derbel N. High accurate and wideband current excitation for bioimpedance health monitoring systems. Measurement. 2015;79:339-48. https://doi.org/10.1016/j.measurement.2015.07.054
  106. Kerner TE. Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects. IEEE Trans Med Imaging. 2002;21(6):638-45. https://doi.org/10.1109/TMI.2002.800606
  107. Aberg P. Skin cancer identification using multifrequency electrical impedance—a potential screening tool. IEEE Trans Biomed Eng. 2004;51:2097-102. https://doi.org/10.1109/TBME.2004.836523
  108. Osterman KS. Non-invasive assessment of radiation injury with electrical impedance spectroscopy. Phys Med Biol. 2004;49:665-83. https://doi.org/10.1088/0031-9155/49/5/002
  109. Brown BH. Detection of cervical intraepithelial neoplasia using impedance spectroscopy: a prospective study. BJOG: An Int J Obstet Gynaecol. 2005;112:802-6. https://doi.org/10.1111/j.1471-0528.2004.00530.x
  110. Süselbeck T, Thielecke H, Köchlin J, Cho S, Weinschenk I, Metz J, et al. Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system. Basic Res Cardiol. 2005;100:446-52. https://doi.org/10.1007/s00395-005-0527-6
  111. Soley A. On-line monitoring of yeast cell growth by impedance spectroscopy. J Biotechnol 2005;118:398-405. https://doi.org/10.1016/j.jbiotec.2005.05.022
  112. Strand-Amundsen R, Tronstad C, Kalvøy H, Gundersen Y, Krohn CD, Aasen AO, Holhjem L, Reims HM, Martinsen ØG, Høgetveit JO, Ruud TE, Tønnessen TI. In vivo characterization of ischemic small intestine using bioimpedance measurements. Physiological Measurement. 2016;37(2):257-75. https://doi.org/10.1088/0967-3334/37/2/257
  113. Strand-Amundsen R, Høgetveit JO, Tronstad C. Small intestinal ischemia and reperfusion – Bioimpedance measurements. Physiological Measurement. 2018;39(2). https://doi.org/10.1088/1361-6579/aaa576
  114. Hildebrandt C, Thielecke H. Non-invasive Characterization of the Osteogenic Differentiation of hMSCs in 3D by Impedance Spectroscopy. In: Dossel O, Schlegel WC, editors. World Congress on Medical Physics and Biomedical Engineering, Vol 25, Pt 10: Biomaterials, Cellular and Tissue Engineering, Artificial Organs. IFMBE Proceedings. 25. New York: Springer; 2009. p. 81-84. https://doi.org/10.1007/978-3-642-03900-3_24
  115. Yuste Y, Serrano, J., Olmo, A., Maldonado-Jacobi, A., Pérez, P., Huertas, G., Pereira, S., Portilla, F. and Yúfera, A., editor Monitoring Muscle Stem Cell Cultures with Impedance Spectroscopy. In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018); 2018. https://doi.org/10.5220/0006712300960099
  116. Martínez-Teruel J, García-Sánchez T, Fontova A, Bragós R. Electrical Impedance Spectroscopy cell monitoring in a miniaturized bioreactor 19th IMEKO TC 4 Symposium and 17th IWADC Workshop Advances in Instrumentation and Sensors Interoperability Barcelona, Spain 2013.
  117. Xu Y, Xie X. Review of impedance measurements of whole cells. Biosensors & Bioelectronics. 2015;77(77).
  118. Pérez P, Maldonado-Jacobi A, López A, Martínez C, Olmo A, Huertas G, et al. "Remote Sensing of Cell Culture Assays. Cell Culture: InTech Europe; 2017.
  119. DePaola N, Phelps JE, Florez L, Keese CR, Minnear FL, Giaever I, et al. Electrical impedance of cultured endothelium under fluid flow. Annals of Biomedical Engineering. 2001;29(8):648-56. https://doi.org/10.1114/1.1385811
  120. Wang H, Sobahi N, Han A. Impedance spectroscopy-based cell/particle position detection in microfluidic systems Lab on a Chip. 2017;7. https://doi.org/10.1039/C6LC01223J
  121. Kozhevnikov E, Hou XL, Qiao SP, Zhao YF, Li CF, Tian WM. Electrical impedance spectroscopy - a potential method for the study and monitoring of a bone critical-size defect healing process treated with bone tissue engineering and regenerative medicine approaches. Journal of Materials Chemistry B. 2016;4(16):2757-67. https://doi.org/10.1039/C5TB02707A
  122. Kiviharju K, Salonen K, Moilanen U, Meskanen E, Leisola M, Eerikäinen T. On-line biomass measurements in bioreactor cultivations: comparison study of two on-line probes. . J Ind Microbiol Biotechnol. 2007;34(8):561-6. https://doi.org/10.1007/s10295-007-0233-5
  123. Liu JJ, Li H, Zhang F, Li X, Wang L, Chen Y. Online impedance monitoring of yeast cell culture behaviors. Microelectronic Engineering. 2011;88(8):1711-3. https://doi.org/10.1016/j.mee.2010.12.056
  124. Holhjem L, Strand-Amundsen R, Aasmundtveit KE, Tønnessen TI. Development of a conductometric biocompatible sensor for detecting ischemia. Microelectronics Packaging Conference (EMPC); European2013.
  125. El Khaled D, Novas N, Gazquez JA, Manzano-Agugliaro F. Dielectric and Bioimpedance Research Studies: A Scientometric Approach Using the Scopus Database. A Review. MDPI Publications. 2018;6(6).
  126. Giaever I, Keese CR. Micromotion of mammalian cells measured electrically. Proc Nail Acad Sci USA Cell Biology. 1991;88:7896-900. https://doi.org/10.1073/pnas.88.17.7896
  127. Jeong SH, Lee DW, Kim S, Kim J, Ku B. A study of electrochemical biosensor for analysis of three-dimensional (3D) cell culture. Biosens Bioelectron. 2012;35:128-33. https://doi.org/10.1016/j.bios.2012.02.039
  128. Wegener J, Sieber M, Galla HJ. Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. J Biochem Biophys Methods 1996;32(3):151-70. https://doi.org/10.1016/0165-022X(96)00005-X
  129. Szulcek R, Bogaard HJ, Van Nieuw Amerongen GP. Electric Cell-substrate Impedance Sensing for the Quantification of Endothelial Proliferation, Barrier Function, and Motility. J Vis Exp 2014;85(51300). https://doi.org/10.3791/51300
  130. Lo CM, Keese CR, Giaever I. Monitoring motion of confluent cells in tissue culture. Exp Cell Res 1993;204(1):102-9. https://doi.org/10.1006/excr.1993.1014
  131. Giaever I, Keese CR. A morphological biosensor for mammalian cells. Nature. 1993;366:591-2. https://doi.org/10.1038/366591a0
  132. Lo CM, Keese CR, Giaever I. Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophys J. 1995;69(6):2800-7. https://doi.org/10.1016/S0006-349595)80153-0
  133. Rahim S, Uren A. A Real-time Electrical Impedance BasedTechnique to Measure Invasion of Endothelial Cell Monolayer by Cancer Cells. Journal of Visualized Experiments. 2011;50.
  134. Bagnaninchi PO, Holmes C, Drummond N, Daoud J, Tabrizian M. Measurements of adipose derived stem cell vitality with optical coherence phase microscopy. Dynamics and Fluctuations in Biomedical Photonics Viii. Proceedings of SPIE. 7898. Bellingham: Spie-Int Soc Optical Engineering; 2011.
  135. Nordberg RC, Zhang J, Griffith EH, Frank MW, Starly B, Loboa EG. Electrical Cell-Substrate Impedance Spectroscopy Can Monitor Age-Grouped Human Adipose Stem Cell Variability During Osteogenic Differentiation. Stem Cells Translational Medicine. 2016;07:07.
  136. Pänke O, Balkenhohl T, Kafka J, Schäfer D, Lisdat F. Impedance spectroscopy and biosensing. Adv Biochem Eng Biotechnol 2008;109:195-237. https://doi.org/10.1007/10_2007_081
  137. Wegener J, Keese CR, Giaever I. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 2000;259(1):158-66. https://doi.org/10.1006/excr.2000.4919
  138. Nguyen DT, Kosobrodov R, et al. Electrode-Skin contact impedance: In vivo measurements on an ovine model. Journal of Physics: Conference Series 434 2013. https://doi.org/10.1088/1742-6596/434/1/012023
  139. Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20(2):107-26. https://doi.org/10.1177/2211068214561025
  140. Elbrecht DH, Long CJ, Hickman JJ. Transepithelial/endothelial Electrical Resistance (TEER) theory and applications for microfluidic body-on-a-chip devices. J Rare Dis Res Treat. 2016;1(3):46-52. https://doi.org/10.29245/2572-9411/2016/3.1026
  141. Benson K, Cramer S, Galla HJ. Impedance-based cell monitoring: barrier properties and beyond. Fluids Barriers CNS. 2013;10(5). https://doi.org/10.1186/2045-8118-10-5
  142. Zucco F, Batto AF, Bises G. An Inter-Laboratory Study to Evaluate the Effects of Medium Composition on the Differentiation and Barrier Function of Caco-2 Cell Lines. Atla-Altern Lab Anim. 2005;33:603-18.
  143. Bera TK. Applications of Electrical Impedance Tomography (EIT): A Short Review. IOP Conf Ser: Mater Sci Eng. 2018. https://doi.org/10.1088/1757-899X/331/1/012004
  144. Bera TK, Nagaraju J. Electrical impedance tomography (EIT): a harmless medical imaging modality, research developments. Computer vision and image processing: methodologies and applications. USA: IGI Global; 2013. p. 224-62.
  145. Bayford R, Tizzard A. Bioimpedance imaging: an overview of potential clinical applications. Analyst. 2012;137(20):4635-43. https://doi.org/10.1039/c2an35874c
  146. Lionheart WRB, Kaipio J, McLeod CN. Generalized optimal current patterns and electrical safety in EIT. Physiol Meas. 2001;22(1):85-90. https://doi.org/10.1088/0967-3334/22/1/311
  147. Wang BS, Weiland JD. Analysis of the Peak Resistance Frequency Method. IEEE Transactions on Biomedical Engineering. 2016;63(10):2086-94. https://doi.org/10.1109/TBME.2015.2510335
  148. Malmivuo J, Plonsey R. Bioelectromagnetism: Principles and Application of Bioelectric and Biomagnetic Fields. 1995 (Oxford University Press, New York). https://doi.org/10.1093/acprof:oso/9780195058239.001.0001
  149. Brown B, Seagar A. The Sheffield data collection system. Clin Phys Physiol Meas. 1987;8(91). https://doi.org/10.1088/0143-0815/8/4A/012
  150. Hua P, Webster JG, Tompkins WJ, editors. Effect of the measurement method on noise handling and image quality of EIT imaging. In Proc Ninth Int Conf IEEE Eng In Med And Biol Society. 1987; New York.
  151. Gisser DG, Isaacson D, Newell JC. Current topics in impedance imaging. Clin Phys Physiol Measurement. 1987;8:39-46. https://doi.org/10.1088/0143-0815/8/4A/005
  152. Wang BH, Weiland JD, Ieee. Resistivity Profiles of Wild-type, rd1, and rd10 Mouse Retina. 2015 37th Annual International Conference of the Ieee Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society Conference Proceedings. New York: Ieee; 2015. p. 1650-3.
  153. Linderholm P, Marescot L, Loke MH, Renaud P. Cell culture imaging using microimpedance tomography. IEEE Trans Biomed Eng. 2008;55:138-46. https://doi.org/10.1109/TBME.2007.910649
  154. Sun T, Tsuda S, Green NG. On-chip electrical impedence tomography for monitoring the kinetics in the cell culture. International Conference on Miniaturized Systems for Chemistry and Life Sciences; 2008.
  155. Agarwal S, Curtin J, Duffy B, Jaiswal S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Materials Science & Engineering C-Materials for Biological Applications. 2016;68:948-63. https://doi.org/10.1016/j.msec.2016.06.020
  156. Lee EJ, Wi H, McEwan AL, Farooq A, Sohal H, Woo EJ, et al. Design of a microscopic electrical impedance tomography system for 3D continuous non-destructive monitoring of tissue culture. Biomedical Engineering Online. 2014;13:142. https://doi.org/10.1186/1475-925X-13-142
  157. Yang Y, Jia J, Smith S, Jamil N, Gamal W, Bagnaninchi PO. A miniature electrical impedance tomography sensor and 3-D image reconstruction for cell imaging. IEEE Sens J. 2017;17:514-23. https://doi.org/10.1109/JSEN.2016.2631263
  158. Linderholm P, Vannod J, Barrandon Y, Renaud P. Bipolar resistivity profiling of 3D tissue culture. Biosens Bioelectron. 2007;22:789-96. https://doi.org/10.1016/j.bios.2006.02.016
  159. McEwan A, Romsauerova A, Yerworth R, Horesh L, Bayford R, Holder D. Design and calibration of a compact multi-frequency EIT system for acute stroke imaging. Physiological Measurement. 2006;27(5):S199-S210. https://doi.org/10.1088/0967-3334/27/5/S17
  160. Liu Q, Oh TI, Woo EJ. Design of a microscopic electrical impedance tomography system using two current injections. Physiological Measurement. 2011;32(9):1505-16. https://doi.org/10.1088/0967-3334/32/9/011
  161. Li G, Pang XF. Effects of electromagnetic field exposure on electromagnetic properties of biological tissues. Progress in Biochemistry and Biophysics. 2011;38:604-10. https://doi.org/10.3724/SP.J.1206.2010.00537
  162. Farsaci F, Tellone E, Cavallaro M, Russo A, Ficarra S. Low frequency dielectric characteristics of human blood: a non-equilibrium thermodynamic approach. Journal of Molecular Liquids. 2013;188:113-9. https://doi.org/10.1016/j.molliq.2013.09.033
  163. Leroy J, Dalmay C, Landoulsi A. Microfluidic biosensors for microwave dielectric spectroscopy. Sensors and Actuators, A: Physical. 2015;229:172-81. https://doi.org/10.1016/j.sna.2015.04.002
  164. Gun L, Ning D, Liang Z. Effective Permittivity of Biological Tissue: Comparison of Theoretical Model and Experiment. Mathematical Problems in Engineering. 2017;2017.
  165. Ocera A, Dionigi M, Fratticcioli E, Sorrentino R. A novel technique for complex permittivity measurement based on a planar four-port device. IEEE Transactions on Microwave Theory and Techniques. 2006;54(6). https://doi.org/10.1109/TMTT.2006.872914
  166. Marzec E, Warchoł W. Dielectric properties of a protein-water system in selected animal tissues. Bioelectrochemistry. 2005;65(2):89-94. https://doi.org/10.1016/j.bioelechem.2004.10.001
  167. Dai T, Adler A. In vivo blood characterization from bioimpedance spectroscopy of blood pooling. IEEE Transactions on Instrumentation and Measurement. 2009;58(11):3831-8. https://doi.org/10.1109/TIM.2009.2020836
  168. Bagnaninchi PO, Dikeakos M, Veres T, Tabrizian M. Towards on-line monitoring of cell growth in microporous scaffolds: Utilization and interpretation of complex permittivity measurements. Biotechnology & Bioengineering. 2003;84(3):343-50. https://doi.org/10.1002/bit.10770
  169. Bagnaninchi PO, Dikeakos M, Veres T, Tabrizian M. Complex permittivity measurement as a new noninvasive tool for monitoring in vitro tissue engineering and cell signature through the detection of cell proliferation, differentiation, and pretissue formation. IEEE Transactions on Nanobioscience. 2004;3(4):243-50. https://doi.org/10.1109/TNB.2004.837901
  170. Vorlicek J, Vrba J. Coaxial Probe for Measuring Complex Permittivity of Biological Tissues. Radioterapie. 2009:59.
  171. Frese J, Hrdlicka L, Mertens ME, Rongen L, Koch S, Schuster P, et al. Non-invasive Imaging of Tissue-Engineered Vascular Endothelium with Iron Oxide Nanoparticles. Biomed Tech. 2012;57. https://doi.org/10.1515/bmt-2012-4472
  172. Jaatinen L, Sippola L, Kellomaki M, Miettinen S, Suuronen R, Hyttinen J. Bioimpedance Measurement Setup for the Assessment of Viability and Number of Human Adipose Stem Cells Cultured as Mono layers. In: Dossel O, Schlegel WC, editors. World Congress on Medical Physics and Biomedical Engineering, Vol 25, Pt 10: Biomaterials, Cellular and Tissue Engineering, Artificial Organs. IFMBE Proceedings. 25. New York: Springer; 2009. p. 286-288.
  173. Aziz AUR, Geng C, Fu M, Yu X, Qin K, Liu B. The Role of Microfluidics for Organ on Chip Simulations: Review. Bioengineering. 2017;4(39).
Language: English
Page range: 142 - 158
Submitted on: Dec 14, 2018
Published on: Dec 31, 2018
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 M. Amini, J. Hisdal, H. Kalvøy, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.