Have a personal or library account? Click to login
A single differential equation description of membrane properties underlying the action potential and the axon electric field Cover

A single differential equation description of membrane properties underlying the action potential and the axon electric field

Open Access
|Dec 2018

References

  1. R.F. Melendy, Resolving the biophysics of axon transmembrane polarization in a single closed-form description. Journal of Applied Physics, 118(24), (2015). https://doi.org/10.1063/1.4939278
  2. R.F. Melendy, A subsequent closed-form description of propagated signaling phenomena in the membrane of an axon. AIP Advances, 6(5), (2016). https://doi.org/10.1063/1.4948985
  3. A.L. Hodgkin, Evidence for electrical transmission in nerve. Journal of Physiology, 90, 183-210 (1937). https://doi.org/10.1113/jphysiol.1937.sp003507
  4. J.B. Hursh, Conduction velocity and diameter of nerve fibers. American Journal of Physiology, 127, 131-139 (1939). https://doi.org/10.1152/ajplegacy.1939.127.1.131
  5. B. Frankenhaeuser, The ionic currents in the myelinated nerve fiber. Journal of General Physiology, 48, 79-81 (1965). https://doi.org/10.1085/jgp.48.5.79
  6. B. Naundorf, F. Wolf, M. Volgushev, Unique features of action potential initiation in cortical neurons. Nature, 440, 1060-1063 (2006). https://doi.org/10.1038/nature04610
  7. K.S. Cole, H.J. Curtis, Electric impedance of the squid giant axon during activity. Journal of General Physiology, 22, 649-670 (1939). https://doi.org/10.1085/jgp.22.5.649
  8. D.E. Goldman, Potential, impedance, and rectification in membranes. Journal of General Physiology, 27, 37-60 (1943). https://doi.org/10.1085/jgp.27.1.37
  9. A.L. Hodgkin, B. Katz, The effect of sodium ions on the electrical activity of the giant axon of the squid. Journal of Physiology, 108, 37-77 (1949). https://doi.org/10.1113/jphysiol.1949.sp004310
  10. J. Koester, S.A. Siegelbaum, in Principles of Neural Science, E.R. Kandel, J.H. Schwartz, T.M. Jessell, Eds. (McGraw-Hill, New York, 2000), pp. 140-149.
  11. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500-544 (1952). https://doi.org/10.1113/jphysiol.1952.sp004764
  12. R.E. Taylor, in Physical Techniques in Biological Research, W.L. Natsiik, Ed. (Academic Press, New York, 1963), pp. 219-262.
  13. R. Iansek, S.J. Redman, An analysis of the cable properties of spinal motoneurones using a brief intracellular current pulse. Journal of Physiology, 234, 613-636 (1973). https://doi.org/10.1113/jphysiol.1973.sp010364
  14. W. Rall, J. Segev, The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries (MIT Press, Boston, MA, 1995).
  15. M. London, C. Meunier, I. Segev, Signal transfer in passive dendrites with nonuniform membrane conductance. Journal of Neuroscience, 19, 8219-8233 (1999). https://doi.org/10.1523/JNEUROSCI.19-19-08219.1999
  16. F. Nadim, J. Golowasch, Signal transmission between gap-junctionally coupled passive cables is most effective at an optimal diameter. Journal of Neurophysiology, 95, 3831-3843 (2006). https://doi.org/10.1152/jn.00033.2006
  17. H.M. Lieberstein, On the Hodgkin-Huxley partial differential equation. Mathematical Biosciences, 1, 45-69 (1967). https://doi.org/10.1016/0025-5564(67)90026-0
  18. W. Rall, Core Conductor Theory and Cable Properties of Neurons: Handbook of Physiology, the Nervous System, Cellular Biology of Neurons (American Physiological Society, 1977), pp. 39-93.
  19. R. West, E. Schutter, G. Wilcox, in The IMA Volumes in Mathematics and its Applications: Evolutionary Algorithms, L.D. Davis et al., Eds. (Springer, New York, 1999), pp. 33-64.
  20. C. Bédard, A. Destexhe, A modified cable formalism for modeling neuronal membranes at high frequencies. Biophysical Journal, 94, 1133-1143 (2008). https://doi.org/10.1529/biophysj.107.113571
  21. J.J.B. Jack, D. Noble, R.W. Tsien, Electric Current Flow in Excitable Cells (Clarendon Press, Oxford, 1975).
  22. D. Sterratt, Principles of Computational Modelling in Neuroscience (Cambridge University Press, Cambridge, 2011). https://doi.org/10.1017/CBO9780511975899
  23. R. Hobbie, Intermediate Physics for Medicine and Biology (AIP Press, New York, 1997).
  24. R. Plonsey, R. Barr, Bioelectricity: A Quantitative Approach (Springer, Boston, 2000). https://doi.org/10.1007/978-1-4757-3152-1
  25. N. Sperelakis, N. Sperelakis, Cell Physiology Sourcebook: Essentials of Membrane Biophysics (Academic Press, London, 2012).
  26. J. Malmivuo, R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (Oxford University Press, New York, 2000).
  27. B. Roth, J. Wikswo, The magnetic field of a single axon: a comparison of theory and experiment. Biophysical Journal, 48, 93-109 (1985). https://doi.org/10.1016/S0006-3495(85)83763-2
  28. B. Roth, J. Wikswo, The electrical potential and the magnetic field of an axon in a nerve bundle. Mathematical Biosciences, 76, 37-57 (1985). https://doi.org/10.1016/0025-5564(85)90045-8
  29. R.S. Wijesinghe, Detection of magnetic fields created by biological tissues. Journal of Electrical and Electronic Systems, 3, 1-7 (2014). https://doi.org/10.4172/2332-0796.1000120
  30. B. Greenebaum, F. Barnes, Bioengineering and Biophysical Aspects of Electromagnetic Fields (CRC/Taylor & Francis, Boca Raton, FL., 2007).
  31. B. Commoner, J. Townsend, G.E. Pake, Free radicals in biological materials. Nature, 174, 689-691 (1954). https://doi.org/10.1038/174689a0
  32. V.N. Varfolomeev et al., Paramagnetic properties of hepatic tissues and transplantable hepatomas. Biofizika. 21, 881-886 (1976).
  33. R. Pethig, D.B. Kell, The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Physics in medicine and biology, 32, 933-970 (1987). https://doi.org/10.1088/0031-9155/32/8/001
  34. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2008).
  35. W.T. Coffey, Y.P. Kalmykov, J.T. Waldron, The Langevin Equation, with Applications in Physics, Chemistry, and Electrical Engineering (World Scientific, River Edge, NJ, 1996).
  36. J. Koester, S.A. Siegelbaum, in Principles of Neural Science, E.R. Kandel, J.H. Schwartz, T.M. Jessell, Eds. (McGraw-Hill, New York, 2000), pp. 150-169.
  37. A.F. Huxley, From overshoot to voltage clamp. Trends in Neurosciences, 25, 553-558 (2002). https://doi.org/10.1016/S0166-2236(02)02280-4
  38. E.O. Hernández-Ochoa, M.F. Schneider, Voltage clamp methods for the study of membrane currents and SR Ca2+ release in adult skeletal muscle fibres. Progress in Biophysics and Molecular Biology, 108, 98-118 (2012). https://doi.org/10.1016/j.pbiomolbio.2012.01.001
  39. S.G. Waxman, J.D. Kocsis, P.K. Stys, Eds., The Axon: Structure, Function and Pathophysiology (Oxford University Press, New York, 1995). https://doi.org/10.1093/acprof:oso/9780195082937.001.0001
  40. A.V. Holden, P.G. Haydon, W. Winlow, Multiple equilibria and exotic behavior in excitable membranes. Biological Cybernetics, 46, 167-172 (1983). https://doi.org/10.1007/BF00336798
  41. R. Guttman, S. Lewis, J. Rinzel, Control of repetitive firing in squid axon membrane as a model for a nuroneoscillator. Journal of Physiology, 305, 377-395 (1980). https://doi.org/10.1113/jphysiol.1980.sp013370
  42. H.R. Leuchtag, Voltage-Sensitive Ion Channels: Biophysics of Molecular Excitability (Springer, New York, Philadelphia, 2008). https://doi.org/10.1007/978-1-4020-5525-6
  43. D.A. Hill, Electromagnetic Fields in Cavities: Deterministic and Statistical Theories (IEEE Press Series on Electromagnetic Wave Theory, NJ, 2009). https://doi.org/10.1002/9780470495056
  44. D.A. McQuarrie, Mathematical Methods for Scientists and Engineers (University Science Books, CA, 2003).
  45. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1, 445-466 (1961). https://doi.org/10.1016/S0006-3495(61)86902-6
  46. G. Zhao, Z. Hou, H. Xin, Frequency-selective response of FitzHugh-Nagumo neuron networks via changing random edges. Chaos: An Interdisciplinary Journal of Nonlinear Science, 16, 043107 (2006). https://doi.org/10.1063/1.2360503
  47. S.Y. Gordleeva, et al., Bi-directional astrocytic regulation of neuronal activity within a network. Frontiers in Computational Neuroscience, 6, 104-114 (2012). https://doi.org/10.3389/fncom.2012.00092
  48. R.W. Aldrich, P.A. Getting, S.H. Thompson, Inactivation of delayed outward current in molluscan neurone somata. Journal of Physiology, 291, 507-530 (1979). https://doi.org/10.1113/jphysiol.1979.sp012828
  49. K. Aihara, G. Matsumoto, in Nerve Excitation and Chaos: Dynamical Systems and Nonlinear Oscillations, Gikō Ikegami, Ed. (World Scientific Publishing Co., 1986). Pp. 254-267.
  50. J. Rinzel, G. Huguet, Nonlinear Dynamics of Neuronal Excitability, Oscillations, and Coincidence Direction. Communications on Pure and Applied Mathematics, 66(9), 1464-1494 (2013). https://doi.org/10.1002/cpa.21469
  51. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193-213 (1981). https://doi.org/10.1016/S0006-3495(81)84782-0
  52. T. Sasaki, N. Matsuki, Y. Ikegaya, Action-potential modulation during axonal conduction. Science, 331, 599-601 (2011). https://doi.org/10.1126/science.1197598
  53. N.H. Sabah, K.N. Leibovic, The effect of membrane parameters on the properties of the nerve impulse. Biophysical Journal, 12, 1132-1144 (1972). https://doi.org/10.1016/S0006-3495(72)86150-2
  54. N.F. Britton, Essential Mathematical Biology (Springer-Verlag, London, 2003). https://doi.org/10.1007/978-1-4471-0049-2
  55. J.D. Murray, Mathematical Biology I: An Introduction (Springer-Verlag, Berlin, 2002).
  56. E.O. Voit, A First Course in Systems Biology (Garland Science, Taylor & Francis, New York, 2013).
  57. R.L. Armstrong, J.D. King, The Electromagnetic Interaction (Prentice Hall, Englewood Cliffs, NJ, 1973).
  58. G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicist: A Comprehensive Guide (Elsevier, MA, 2013).
  59. E. Weisstein, CRC Concise Encyclopedia of Mathematics (CRC Press, Boca Raton, 2003).
  60. The electrical system of the body: The physics of the nervous system (Medical Physics, University of Notre Dame, n.d., http://www3.nd.edu/~nsl/Lectures/mphysics/).
  61. R.I. Macey, in Membrane Physiology, T.E. Andreoli, J.F. Hoffman, D.D. Fanestil, Eds. (Springer, New York, 1980), pp. 125-146. https://doi.org/10.1007/978-1-4757-1718-1_7
  62. T. Begenisic, Magnitude and location of surface charges on myxicola giant axons. The Journal of General Physiology, 66, 47-65 (1975). https://doi.org/10.1085/jgp.66.1.47
  63. J. Enderle, S. Blanchard, J. Bronzino, Introduction to Biomedical Engineering (Elsevier Academic Press, Amsterdam, Boston, London, New York, 2005).
  64. P. Smejtek, in Permeability and Stability of Lipid Bilayers, E. Anibal Disalvo, S.A. Simon, Eds. (CRC Press, Boca Raton, Ann Arbor, London, 1994), pp. 197-236.
Language: English
Page range: 106 - 114
Submitted on: Sep 24, 2018
Published on: Dec 31, 2018
Published by: University of Oslo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Robert F. Melendy, published by University of Oslo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.