Have a personal or library account? Click to login
Supply chain management mitigation to climate change in three selected industrial sectors Cover

Supply chain management mitigation to climate change in three selected industrial sectors

Open Access
|Feb 2024

References

  1. Aracil, C., Haro, P., Giuntoli, J. & Ollero, P. (2017). Proving the climate benefit in the production of biofuels from municipal solid waste refuse in Europe. Journal of Cleaner Production, 142 (4), pp. 2887-2900, doi: 10.1016/j.jclepro.2016.10.181.
  2. Arévalo, J., Quispe, G. & Raymundo, C. (2017). Sustainable Energy Model for the production of biomass briquettes based on rice husk in low-income agricultural areas in Peru. Energy Procedia, 141, pp. 138-145, doi: 10.1016/j.egypro.2017.11.026.
  3. Azevedo, S. G., Carvalho, H. & Cruz Machado, V. (2011). The influence of green practices on supply chain perf ormance: A case study approach. Transportation Research Part E: Logistics and Transportation Review, 47 (6), pp. 850-871, doi: 10.1016/j.tre.2011.05.017.
  4. Babel, M. S., Oo, E., Shinde, V. R., Kamalamma, A. G. & Haarstrick, A. (2020). Comparative study of water and energy use in selected automobile manufacturing industries. Journal of Cleaner Production, 246, doi: 10.1016/j.jclepro.2019.118970.
  5. Ballinger, B., Schmeda-Lopez, D., Kefford, B., Parkinson, B., Stringer, M., Greig, C. & Smart, S. (2020). The vulnerability of electric-vehicle and wind-turbine supply chains to the supply of rare-earth elements in a 2-degree scenario. Sustainable Production and Consumption, 22, pp. 68-76, doi: 10.1016/j.spc.2020.02.005.
  6. Cagliano, R., Worley, C. & Caniato, F. (2016). The Challenge of Sustainable Innovation in Agri-Food Supply Chains. Organizing Supply Chain Processes for Sustainable Innovation in the Agri-Food Industry (Organizing for Sustainable Effectiveness), Emerald Group Publishing Limited, 5, pp. 1-30, doi: 10.1108/S2045-060520160000005009.
  7. Cao, Y., Zhao, Y., Wen, L., Li, Y., Ii, H., Wang, S., Liu, Y., Shi, Q. & Weng, J. (2019). System dynamics simulation for CO2 emission mitigation in green electric-coal supply chain. Journal of Cleaner Production, 232, pp. 759-773, doi: 10.1016/j.jclepro.2019.06.029.
  8. Chavez, R. & Sharma, M. (2018). Profitability and environmental friendliness of a closed-loop supply chain for PET components: A case study of the Mexican automobile market. Resources, Conservation and Recycling, 135, pp. 172-189, doi: 10.1016/j.resconrec.2017.10.038.
  9. Chiou, T.-Y., Chan, H. K., Lettice, F. & Chung, S. H. (2011). The influence of greening the suppliers and green innovation on environmental performance and competitive advantage in Taiwan. Transportation Research Part E: Logistics and Transportation Review, 47 (6), pp. 822-836, doi: 10.1016/j.tre.2011.05.016.
  10. Cristina De Stefano, M., Montes-Sancho, M. J. & Busch, T. (2016). A natural resource-based view of climate change: Innovation challenges in the automobile industry. Journal of Cleaner Production, 139, pp. 1436-1448, doi: 10.1016/j.jclepro.2016.08.023.
  11. De Meyer, A., Cattrysse, D., Rasinmäki, D. & Van Orshoven, J. (2014). Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review. Renewable and Sustainable Energy Reviews, 31, pp. 657-670, doi: 10.1016/j.rser.2013.12.036.
  12. Edgeman, R. & Wu, Z. (2016). Supply chain criticality in sustainable and resilient enterprises. Journal of Modelling in Management, 11 (4), pp. 869-888, doi: 10.1108/JM2-10-2014-0078.
  13. Fleming, A. Hobday, A. J., Farmery, A., van Putten, E. I., Pecl, G. T., Green, B. S. & Lim-Camacho, L. (2014). Climate change risks and adaptation options across Australian seafood supply chains – A preliminary assessment. Climate Risk Management, 1, pp. 39-50, doi: 10.1016/j.crm.2013.12.003.
  14. Gomes, A. C., Pinto-Varela, T. &Barbosa-Póvoa, A. P. (2016). Multimodal Green Food Supply Chain Design and Planning under Uncertainty. Computer Aided Chemical Engineering, 38, str. 181-186, doi: 10.1016/B978-0-444-63428-3.50035-7.
  15. Gruda, N., Bisbis, M. & Tanny, J. (2019). Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production – A review. Journal of Cleaner Production, 225, pp. 324-339, doi: 10.1016/j.jclepro.2019.03.295.
  16. Haley, B. (2015). Low-carbon innovation from a hydroelectric base: The case of electric vehicles in Québec. Environmental Innovation and Societal Transitions, 14, pp. 5-25, doi: 10.1016/j.eist.2014.05.003.
  17. Halldórsson, Á., Kovács, G., Halldórsson, Á. & Kovács, G. (2010). The sustainable agenda and energy efficiency: Logistics sol utions and supply chains in times of climate change. International Journal of Physical Distribution & Logistics Management, 40 (1/2), pp. 5-13, doi: 10.1108/09600031011018019.
  18. He, M., Zhou, J. & Liu, L. (2017). A study of supporting legal policies for improving China’s new energy automobile industry ba sed on environmental benefits equilibrium-enlightenment from the environmental subsidies of Germany legal system. International Journal of Hydrogen Energy, 42 (29), pp. 18699-18708, doi: 10.1016/j.ijhydene.2017.04.184.
  19. Ivascu, L., Mocan, M., Draghici, A., Turi, A. & Rus, S. (2015). Modeling the Green Supply Chain in the Context of Sustainable Development. Procedia Economics and Finance, 26, pp. 702-708, doi: 10.1016/S2212-5671(15)00819-9.
  20. Jacxsesns, L., Luning, P. A., van der Vorst, J. G. A. J., Devlieghere, F., Leemans, R. & Uyttendaele, M. (2010). Simulation modelling and risk assessment as tools to identify the impact of climate change on microbiological food safety – The case study of fresh produce supply chain. Food Research International, 43 (7), pp. 1925-1935, doi: 10.1016/j.foodres.2009.07.009.
  21. Jawad, H., Jaber, M. Y. & Nuwayhid, R. Y. (2018). Improving supply chain sustainability using exergy analysis. European Journal of Operational Research, 269 (1), pp. 258-271, doi: 10.1016/j.ejor.2017.10.007.
  22. Jawid, A. (2020). A Ricardian analysis of the economic impact of climate change on agriculture: Evidence from the farms in the central highlands of Afghanistan. Journal of Asian Economics, doi: 10.1016/j.asieco.2020.101177.
  23. Kanger, L., Geels, F. W., Sovacool, B. & Schot, J. (2019). Technological diffusion as a process of societal embedding: Lessons from historical automobile transitions for future electric mobility. Transportation Research Part D: Transport and Environment, 71, pp. 47-66, doi: 10.1016/j.trd.2018.11.012.
  24. Kayikci, Y., Ozbiltekin, M. & Kazancoglu, Y. (2019). Minimizing losses at red meat supply chain with circular and central slaughterhouse model. Journal of Enterprise Information Management, doi: 10.1108/JEIM-01-2019-0025.
  25. Klein, D., Wolf, C., Schulz, C. & Weber-Blaschke, G. (2016). Environmental impacts of various biomass supply chains for the provision of raw wood in Bavaria, Germany, with focus on climate change. Science of The Total Environment, 539, pp. 45-60, doi: 10.1016/j.scitotenv.2015.08.087.
  26. Kulkarni, S., Rao, P. & Patil, Y. (2014). Are the Non-renewable Resource Utilization and Waste Management Practices Employed in Indian Automobile Sector Sustainable?. Procedia - Social and Behavioral Sciences, 133, pp. 364-371, doi: 10.1016/j.sbspro.2014.04.202.
  27. Lewandowski, I. (2015). Securing a sustainable biomass supply in a growing bioeconomy. Global Food Security, 6, pp. 34-42, doi: 10.1016/j.gfs.2015.10.001.
  28. Li, Y., Kesharwani, R., Sun, Z., Qin, R., Dagli, C., Zhang, M. & Wang, D. (2020). Economic viability and environmental impact investigation for the biofuel supply chain using co-fermentation technology. Applied Energy, 259, doi: 10.1016/j.apenergy.2019.114235.
  29. Lim-Camacho, L., Plagányi, E. E., Crimp, S., Hodkinson, J. H., Hobday, A. J., Howden, S. M. & Loechel, B. (2017). Complex resource supply chains display higher resilience to simulated climate shocks. Global Environmental change, 46, pp. 126-138, doi: 10.1016/j.gloenvcha.2017.08.011.
  30. Liverpool-Tasie, L. S. O., Pummel, H., Tambo, J. A., Schmitt Olabisi, L. & Osuntade, O. (2020). Perceptions and exposure to climate events along agricultural value chains: Evidence from Nigeria. Journal of Environmental Management, 264, doi: 10.1016/j.jenvman.2020.110430.
  31. Lodorfos, G., Konstantopoulou, A., Kostopoulos, I. & Essien, E. (2018). Food and Drink Industry in Europe and Sustainability Issues. The Sustainable Marketing Concept in European SMEs, Emerald Publishing Limited, pp. 121-140, doi: 10.1108/978-1-78754-038-520180006.
  32. Lytos, A., Lagkas, T., Sarigiannidis, P., Zervakis, M. & Livanos, G. (2020). Towards smart farming: Systems, frameworks and exploitation of multiple sources. Computer Networks, 172, doi: 10.1016/j.comnet.2020.107147.
  33. Mafakheri, F. & NAsiri, F. (2014). Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions. Energy Policy, 67, pp. 116-126, doi: 10.1016/j.enpol.2013.11.071.
  34. Mastrocinque, E., Javier Ramírez, F., Honrubia-Escribano, A. & Pham, D. T. (2020). An AHP-based multi-criteria model for sustainable supply chain development in the renewable energy sector. Expert Systems with Applications, 150, doi: 10.1016/j.eswa.2020.113321.
  35. Meinel, U. & Abegg, B. (2017). A multi-level perspective on climate risks and drivers of entrepreneurial robustness – Findings from sectoral comparison in alpine Austria. Global Environmental Change, 44, pp. 68-82, doi: 10.1016/j.gloenvcha.2017.03.006.
  36. Menikpura, S. N. M., Sang-Arun, J. & Bengtsson, M. (2016). Assessment of environmental and economic performance of Waste-to-Energy facilities in Thai cities. Renewable Energy, 86, pp. 576-584, doi: 10.1016/j.renene.2015.08.054.
  37. Musgrave, J., Beer, S. & Lemmer, C. (2011). A critical review of “green” procurement: Life cycle analysis of food products within the supply chain. Worldwide Hospitality and Tourism Themes, 3 (3), pp. 229-244, doi: 10.1108/17554211111142194.
  38. Ng, R. T. L. & Maravelias, C. T. (2017). Economic and energetic analysis of biofuel supply chains. Applied Energy, 205, pp. 1571-1582, doi: 10.1016/j.apenergy.2017.08.161.
  39. Olofsson, J. & Börjesson, P. (2018). Residual biomass as resource – Life-cycle environmental impact of wastes in circular resource systems. Journal of Cleaner Production, 196, pp. 997-1006, doi: 10.1016/j.jclepro.2018.06.115.
  40. Parajuli, R., Thoma, G. & Matlock, M. D. (2019). Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: A review. Science of The Total Environment, 650 (2), pp. 2863-2879, doi: 10.1016/j.scitotenv.2018.10.019.
  41. Payen, S., Falconer, S., Carlson, B., Yang, W. & Ledgard, S. (2020). Eutrophication and climate change impacts of a case study of New Zealand beef to the European market. Science of The Total Environment, 710, doi: 10.1016/j.scitotenv.2019.136120.
  42. Phadke, R. (2019). Climate-smart mining: A conference report on the World Bank’s facility launch. The Extractive Industries and Society, 6 (4), pp. 1373-1375, doi: 10.1016/j.exis.2019.10.004.
  43. Pineda, R. (2016). Making the climate change issue “real” for managers. Journal of Global Responsibility, 7 (1), pp. 84-97, doi: 10.1108/JGR-12-2015-0022.
  44. Pires, J. C. M. (2019). Negative emissions technologies: A complementary solution for climate change mitigation. Science of The Total Environment, 672, pp. 502-514, doi: 10.1016/j.scitotenv.2019.04.004.
  45. Präger, F., Paczkowski, S., Sailer, G., Derkyi, N. S. A. & Pelz, S. (2019). Biomass sources for a sustainable energy supply i n Ghana – A case study for Sunyani. Renewable and Sustainable Energy Reviews, 107, pp. 413-424, doi: 10.1016/j.rser.2019.03.016.
  46. Raychaudhuri, A. & Ghosh, S. K. (2016). Biomass Supply Chain in Asian and European Countries. Procedia Environmental Sciences, 35, pp. 914-924, doi: 10.1016/j.proenv.2016.07.062.
  47. Rivera, J. L. & Reyes-Carrillo, T. (2014). A Framework for Environmental and Energy Analysis of the Automobile Painting Process. Procedia CIRP, 15, pp. 171-175, doi: 10.1016/j.procir.2014.06.022.
  48. Sazvar, Z., Rahmani, M. & Govindan, K. (2018). A sustainable supply chain for organic, conventional agro-food products: The role of demand substitution, climate change and public health. Journal of Cleaner Production, 194 (1), pp. 564-583, doi: 10.1016/j.jclepro.2018.04.118.
  49. Schor, J. B. (2014). Climate discourse and economic downturns: The case of the United States, 2008–2013. Environmental Innovation and Societal Transitions, 13, pp. 6-20, doi: 10.1016/j.eist.2014.04.006.
  50. Shankar Sankaran, P., Andreoni, V. & Miola, A. (2015). Climate change and supply-chain vulnerability: Methodologies for resilience and impacts quantification. International Journal of Emergency Services, 4 (1), pp. 6-26, doi: 10.1108/IJES-09-2014-0012.
  51. Sharma, B., Ingalls, R. G., Jones, C. L. & Khanchi, A. (2013). Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future. Renewable and Sustainable Energy Reviews, 24, pp. 608-627, doi: 10.1016/j.rser.2013.03.049.
  52. Shokri, A., Oglethorpe, D. & Nabhani, F. (2014). Evaluating sustainability in the UK fast food supply chain: Review of dimensions, awareness and practice. Journal of Manufacturing Technology Management, 25 (8), pp. 1224-1244, doi: 10.1108/JMTM-04-2013-0031.
  53. Simioni, F. J., Buschinelli, C. C. de A., Moreira, J. M. M. A. P., dos Passos, Sandy Bernardi, B. M. & Girotto, F. T. (2018). Forest biomass chain of production: Challenges of small-scale forest production in southern Brazil. Journal of Cleaner Production, 174, pp. 889-898, doi: 10.1016/j.jclepro.2017.10.330.
  54. Simpson, D., Power, D. & Samson, D. (2007). Greening the automotive supply chain: a relationship perspective. International Journal of Operations & Production Management, 27 (1), pp. 28-48, doi: 10.1108/01443570710714529.
  55. Sovacool, B. K. & Axsen, J. (2018). Functional, symbolic and societal frames for automobility: Implications for sustainability transitions. Transportation Research Part A: Policy and Practice, 118, pp. 730-746, doi: 10.1016/j.tra.2018.10.008.
  56. Szarka, N., Len, V. & Thrän, D. (2019). The crucial role of biomass-based heat in a climate-friendly Germany–A scenario analysis. Energy, 186, doi: 10.1016/j.energy.2019.115859.
  57. Touboulic, A., Matthews, L. & Marques, L. (2018). On the road to carbon reduction in a food supply network: a complex adaptive systems perspective. Supply Chain Management, 23 (4), pp. 313-335, doi: 10.1108/SCM-06-2017-0214.
  58. Vance, L., Heckl, I., Bertok, B., Cabezas, H. & Friedler, F. (2015). Designing sustainable energy supply chains by the P-graph method for minimal cost, environmental burden, energy resources input. Journal of Cleaner Production, 94, pp. 144-154, doi: 10.1016/j.jclepro.2015.02.011.
  59. Ward, H., Steckel, J. C. & Jakob, M. (2019). How global climate policy could affect competitiveness. Energy Economics, 84 (1), doi: 10.1016/j.eneco.2019.104549.
  60. Wijesiri, B., Liu, A. & Goonetilleke, A. (2020). Impact of global warming on urban stormwater quality: From the perspective of an alternative water resource. Journal of Cleaner Production, 262, doi: 10.1016/j.jclepro.2020.121330.
  61. World Bank, 2016. Climate Action Plan 2016-2020. Najdeno 3. maja 2020 na spletnem naslovu https://openknowledge.worldbank.org/bitstream/handle/10986/24451/K8860.pdf?sequence=2&isAllowed=y.
  62. Yang, L., Feng, Q., Adamowski, J. F., Deo, R. C., Yin, Z., Wen, X., Tang, X. & Wu, M. (2020). Causality of climate, food production and conflict over the last two millennia in the Hexi Corridor, China. Science of The Total Environment, 713, doi: 10.1016/j.scitotenv.2020.136587.
  63. Zabaniotou, A. (2018). Redesigning a bioenergy sector in EU in the transition to circular waste-based Bioeconomy-A multidisciplinary review. Journal of Cleaner Production, 177, pp. 197-206, doi: 10.1016/j.jclepro.2017.12.172.
Language: English
Page range: 1 - 13
Submitted on: Sep 1, 2023
Accepted on: Oct 1, 2023
Published on: Feb 8, 2024
Published by: University of Maribor
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Maja Bašić, Špela Kovše, Andraž Opačić, Marijana Pecarević, Matevž Obrecht, published by University of Maribor
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.