References
- Abebe, G., Getachew, D., Ewunetu, A. (2022). Analyzing land use/land cover changes dynamics using remote sensing and GIS in Gubalafito district, Northeastern Ethiopia, SN Applied Sciences, 4(1), https://doi.org/10.1007/s42452-021-04915-a.
- Abebe, M.S., Deribew, K.T. & Gemeda, D.O. (2019). Exploiting temporal spatial patterns of informal settlements using GIS and remote sensing technique: A case study of Jimma city, Southwestern Ethopia, Environmental System Research, 8(1). https//doi.org/10.1186/s40068-019-0133-5.
- Abraham, T., Tilashwork, C., Tesfaye, F. & Abdlesemad, J. (2016). Impact assessment of land use/land cover change on soil erosion and rural livelihood in andit tid watershed, North Shewa, Ethopia. Archives of Current Research International, 3(1), 1-10 https://doi.org/10.9734/ACRI/2016/22268.
- Aderele, M., Bola, T.S., Oke, D.O. (2020). Land use/land cover changes of Ago-Owu Forest reserve, Osun state, Nigeria using remote sensing techniques, 10(4), https://doi.org/10.4236/ojf.2020.104025.
- Al-sharif, A.A. & Pradhan, B. (2013). Urban sprawl analysis of Tripoli Metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. J Indian Soc of Remote Sens: 1-15, https://doi.org/10.1007/212524-013-02997.
- Anderson, G.L., Hardy, E.E., Roach, J.R., Witmer, R.E. (1976). A land use and land cover classification system for use with remote sensor data, USGS Professional Paper, Washington, DC.
- Appiah, J.O., Agyemang-Duah, W., Sobeng, A.K., Kpienbaareh, D. (2021). Analysing patterns of forest cover change and related land uses in the Tano-Offin forest reserve in Ghana: Implications for forest policy and land management, 5, https://doi.org/10.1016/j.tfp.2021.100105.
- Ariti, A.T., Viliet, J.V., Verburg, P.H. (2015). Land-use and land-cover changes in the central rift valley of Ethiopia: In Assessment of perception and adaptation of stakeholders, 65 (p. 28-37), https:doi.org/10.1016/j.apgeog.2015.10.002.
- Ayele, G.T., Tebeje, A.K., Demissie, S.S., Belete, M.A., Jemberrie, M.A., Teshome, W.M., & Teshale, E.Z. (2018). Time series land cover mapping and change detection analysis using geographic information system and remote sensing. Northern Ethiopia. Air, Soil and Water Research, 11, 1-18, https://doi.org/10.1177/1178622117751603.
- Bazai, M.H. & Panezai, S. (2020). Assessment of urban sprawl and land use change dynamics through GIS and remote sensing in Quetta, Balochistan, Pakistan. Journal of Geography and Social Sciences, 2(1), 31-50, http://www.jgss.com.pk.
- Bhatti, S.S. & Tripathi, N.K. (2014). Built-up area extraction using Landsat 8 OLI imagery. GIScience & Remote Sensing. 51(4), 445-467. https://doi.org/10.1080/15481603.2014.939539.
- Boschetti, L.,Flasse, S., & Brivio P. (2004). Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: the Pareto Boundary, Remote Sens. Environ. 91(3-4), 280–292. https://doi.org/10.1016/j.rse.2004.02.015.
- Bradley, B.A. (2009). Accuracy Assessment of mixed land cover using a GIS–designed sampling scheme. Int. J. Remote Sens. 30 (13), 3515–3529. https://doi.org/10.1080/01431160802562263.
- Chakilu, G. & Moges, M., (2017). Assessing the land use/cover dynamics and its impact on the low flow of Gumara Watershed, Upper Blue Nile Basin, Ethiopia. Hydrol Current Res, 7, 2, https://doi.org/10.4172/2157-7587.1000268.
- Chang, Y., Hou K., Li X, Zhang Y. & Chen P. (2018). Review of land use and land cover change rsearch progress IOP Conference Series. Earth and Environmental Science 113, https://doi.org/10.1088/1755-1315/113/1/012087.
- Chew, C., Shah, R., Zuffada, C., Haji, G., Masters, D., & Mannucci, A.J. (2016). Demonstrating soil moisture remote sensing with observations from the UK, TechDemoSat-1 satellite mission, Geosphysical Research Letters, 43(1), 3317-3324, https://doi.org/10.1002/2016GL068189.
- Congalton, R.G., & Green, K. (2019). Assessing the accuracy of remotely sensed data principles and practices (3rd ed.) CRC press. Taylor and Francis group, Boca Raton, FL, 159–171. https://doi.org/10.1201/9780429052729.
- Congedo, L. (2020). Semi-Automatic Classification Plugin Documentation Release 7.9.5.1. User Manuel, August, 1 – 255.
- Coppins, P., Jonekheere, I., Nackaerts, K., Muys, B. & Lambin E. (2004). Digital change detection methods in ecosystem monitoring: A review. INT. J. of Remote Sensing, 25(9), 1565–1596 https://doi.org/10.1080/0143116031000101675.
- Dash, P.P., Kakkar, R., Shreenivas, V., Pradesh, P.J., Mythri, D.J., Singh, K.H.V., Singh, V.V. & Sahai, R.M.N. (2015). Quantification of urban expansion using geospatial technology. A case study in Bangalore. Advance in Remote Sensing, 4(4), 330-342, https://doi.org/10.4236/ars.2015.44027.
- Disperati, L. and Virdis, S. (2015). Assessment of land-use and land-cover changes from 1965 to 2014 in Tam Giang-Cau Hai Lagoon, central Vietnam. Applied Geography 58, 48–64 https://doi.org/10.1016/j.apgeog.2014.12.012.
- Enoh, M.A., Richard, E.N., Uzoma, C.O., (2022). Modelling and mapping the spatial-temporal changes in land use and land cover in Lagos: A dynamics for building a sustainable urban city. Adv Space Res, https://doi.org/10.1016/j.asr.2022.07.042.
- Enoh, M.A., Okeke, U.C., Nkechi, B.C. (2023). Mapping and simulating the spatial-temporal changes in the Lagos wetland ecosystem: A step-by-step approach to creating a carbon-neutral sustainable urban city. Ecological modelling, 482, https://doi.org/10.1016/j.ecolmodel.2023.110399.
- Esa, E, Assen, M, & Legass, A. (2018). Implications of land use/cover dynamics on soil erosion potential of agricultural watershed, northwestern highlands of Ethopia. Environmental Systems Research, 7(1). https://doi.org/10.1186/s40068-018-0122-0.
- Ezenwaji, E. E., Okoye, A.C., & Awopeju, A.K. (2013). The relative contributions of climate elements and environmental factors to flooding in Awka urban area, African Journal of Environmental Science and Technology, 7(8), 808-814, https://doi.org/10.5897/ajest2013.1519.
- Ezenwaji, E.E., Phil-Eze, P.O., Enete, I.C. & Osuiwu, B.O. (2014). An analysis of the cycles and periodicities of annual rainfall over Awka region, Nigeria. Atmospheric and Climate Sciences, 4, 665-671. http://dx.doi.org/10.4236/acs.2014.44059.
- Firdaus, R., Nakagoshi, N., & Idris, A. (2014). Sustainability assessment of Humid Tropical Watershed: A case of Batang Merao Watershed, Indonesia. Procedia Environmental Sciences, 20, 722-731. https//doi.org/10.1016/j.proenv.2014.03.085.
- Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M., Neigh, C. & Reichstein, M. (2013). Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sensing, 5(5), 2113-2144, https://doi.org/10.3390/rs5052113.
- Fu, H., Shao Z., Fu P., & Cheng Q. (2017). The Dynamics analysis between urban nighttime economy and urbanization using DMSP/OLS nighttime light data in China from 1992 to 2012. Remote Sens. 9(5), 416. https://doi.org/10.3390/rs9050416.
- Hc, H., Srikanth, L., & Surendra, H.J. (2020). Prioritization of sub-watersheds of the Kanakapura watershed in the Arkavathi River Basin, Kamataka, India using remote sensing and GIS. Geology, Ecology, and Landscapes, 5(2), 149-160, https://doi.org/10.1080/24749508.2020.1846841.
- Hegazy, I.R. & Kaloop, M.R.(2015). Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. International Journal of Sustainability Built Environment, 4(1), 117-124. https:doi.org/10.1016/j.ijsbe.2015.02.005.
- Islam, T., Sah, M., Baral S., and Roychoudhury, R. (2018). A Faster technique on rice disease detection using image processing of affected area in agro-field. In Proceedings of the 2nd International Conference on Inventive Communication and Computational Technologies (ICICCT) (pp. 62 – 66). Coimbatore, https://doi.org/10.1109/ICICCT.2018.8473322.
- Khan, M.J, Zeeshan, M.M, & Ali, S.S. (2020). GIS-based change detection of coastal features along Karachi coast Pakistan, Pakistan Journal of Science, 72(2), 124.
- Khan, N.M., Rastoskuev, V., Sato, Y. & Shiozawa, S. (2005). Assessment of hydro saline land degradation by using a simple approach of remote sensing indicators. Agriculture Water Management, 77 (1-3): 96-109, https://doi.org/10.1016/j.agwat.2004.09.038.
- Kharazmi, R., Tavili, A., Rahdari, M.R., Chaban, L., Panidi, E. & Rodrigo-Comino, J. (2018). Monitoring and assessment of seasonal land cover changes using remote sensing. A 30-year (1987-2016) case study of Hamoun Wetland, Iran, Environmental Monitoring and Assessment, 190(6), 356, https://doi.org/10.1007/s10661-018-6726-z.
- Kidane, M., Tolessa, T., Bezie, A., Kessete, N. & Endrias, M. (2019). Evaluating the impacts of climate change and land use/land cover (LU/LC) dynamics on the hydrological responses of the Upper Blue Nile in the Central Highlands of Ethiopia, Spatial Information Research, 27(2), 151-167, https://doi.org/10.1007/s41324-018-0222-y.
- Landsat Project Science Office (2018). Landsat 7 Science Data User’s Handbook. Goddard Space Flight Center, NASA, Wastingston, DC.
- Langford, R.L. (2015). Temporal merging of remote sensing data to enhance spectral regolith, lithological and alteration patterns for regional mineral exploration. Ore Geology Review, 68, 14-29, https://doi.org/10.1016/j.oregeorev.2015.01.005.
- Liu, C., Paul F., & Lalit K. (2007). Comparative Assessment of the measures of thematic classification accuracy. Remote Sens. Environ. 107(4), 606–616. https://doi.org/10.1016/j.rse.2006.10.010.
- Malik, S.M., Arshad, S., Alam, K., & Bilal, O. (2020). Monitoring urban growth and land use changes using GIS and remote sensing: A case study of Tehsil Burewala. Journal of Himalayan Earth Science, 53(1), 140.
- Mohammed, A.A., Shankar, K. & Hasan, R.N. (2019). Data on time series analysis of land surface temperature variation in response to vegetation indices in twelve Wereda of Ethopia using mono window, split window algorithm and spectral radiance model. Data in Brief, 27, 104773. https://doi.org/10.1016/j.dib.2019.104773.
- Mohammady, M., Moradi, H.R., Zeinivand, H., & Temme, A. (2015). A comparison of supervised, unsupervised and synthesis land use classification methods in the North of Iran. Int. J. Environ. Sci. Technol. 12(5), 1515–1526, https://doi.org/10.1007/s13762-014-0728-3.
- Mozumder, C. & Tripathi, N.K. (2014). Geospatial scenario based modelling of urban and agricultural intrusions in Ramsar wetland Deepor Beel in Northeast India using a multi-layer perceptron neural network. International Journal of Applied Earth Observation and Geoinformation, 32(1):92-104, https://doi.org/10.1016/j.jag.2014.03.002.
- Msofe, N.K., Shang L., Lyimo, J. (2019). Land use change trends and their driving forces in the Kilombero valley floodplain, Southeastern Tanzania, Sustainability, 11(2), 505, https://doi.org/10.3390/su11020505.
- National Population Commission (2013). Nigeria Demographic and Health Survey (NDHS), South East. Retrieved from dhsprogram.com/pubs/pdf/OF23/OF23SE.pdf.
- Naz, A. & Rasheed, H. (2017). Modelling the rice land suitability using GIS and multi-criteria decision analysis approach in Sindh, Pakistan. Journal of Basic and Applied Sciences, 13, 26-33, https://doi.org/10.6000/1927-5129.2017.1305.
- Nzoiwu, C.P., Ezenwaji, E.E., Enete, I.C. & Igu, N.I. (2016). Analysis of trends in rainfall and water balance characteristics of Awka, Nigeria, 10(7), 186-196, https://doi.org/10.5897/jgrp2016.0603.
- Osman, M.A.A., Abdel-Rahman, E.M., Onono, J.O., Otaka, L.A., Elhag, M.M., Adan, Tonnang, H.E. (2023). Mapping, intensities and future prediction of land use/land cover dynamics using google earth engine and CA-artificial neural network model. PLoS ONE 18(7):e0288694. https://doi.org/10.1371/journal.pone.0288694.
- Pal, S. & Ziaul, S. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt Journal of Remote Sensing and Space Sciences, 20(1), 125-145, https://doi.org/10.1016/j.ejrs.2016.11.003.
- Parsa, A., Yavari, A. & Nejadi, A. (2016). Spatio-temporal analysis of land/land cover pattern changes in Arasbaran Biosphere Reserve: Iran. Model Earth Syst. Environ. 2, 1-13 https://doi.org/10.1007/s40808-016-0337-3.
- Pontius, R.G., Shusas, E, & McEachern, M. (2004). Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environment. 101:251–268. https://doi.org/10.1016/j.agee.2003.09.008.
- Radhakrishnan, N., Satish, K., Kumar, S. (2014). Analysis of urban sprawl pattern in Tiruchirappalli city using applications of remote sensing and GIS. Arabian Journal Science and Engineering, 39(7), 5555-5563. https://doi.org/10.1007/s13369-014-1099-2.
- Rigden, A.J. & Li, D.(2017). Attribution of surface temperature anomalies induced by land use and land cover changes: Attribution of temperature anomalies, Geophysical Research Letters, 44(13), https://doi.org/10.1002/2017GL0738811.
- Rawat, J.S. & Kumar, M. (2015). Monitoring Land/cover change using Remote Sensing and GIS Techniques: A case study of Hawalbagh Block, District Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18, 77-84. http://dx.doi.org/10.1016/j.ejrs.2015.02.002.
- Rizvi, S.H., Fatima, H., Alam, K. & Iqbal, M.J. (2020). The surface urban heat island intensity and urban expansion: A comparison analysis for the coastal areas of Pakistan, Environment, Development and Sustainability, 23(4), 5520-5537. https://doi.org/10.1007/s10668-020-00828-5.
- Romaguera, M., Vaughan, R.G., Ettema, J., Izquierdo-Verdiguier, E., Hecker, C.A. & Van der Meer, F.D. (2018). Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data. Remote Sensing of Environment, 204, 534-552, https://doi.org/10.1016/j.rse.2017.10.003.
- Saleem, M., Ahmed, S.R., & Javed, M.A. (2020). Impact assessment of urban development patterns on land surface temperature by using remote sensing techniques: A case study of Lahore, Faisalabad and Multan district, Environmental Science and Pollution Research, 27(32), 39865-39878, https://doi.org/10.1007/s11356-020-10050-5.
- Saifullah, K., Barus, B., & Rustiadi, E. (2017). Spatial modelling of land use/land cover change (LUCC) in South Tangerang city, Banten, IOP Conference Series: Earth and Environmental Science, 54(1), 1-12 https://doi.org/10.1088/1742-6596/755/1/011001.
- Satir, O., Berberoglu, S., & Donmez, C. (2016). Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomatics, Natural Hazards and Risk, 7(5), 1645-1658, https://doi.org/10.1080/19475705.2015.1084541.
- Sewnet, A. (2015). Land use/cover change at infraz watershed, Northwestern Ethiopia. Journal of Landscape Ecology, 8(1), 69-83, https://doi.org/10.1515/jlecol-2015-0005.
- Singh, P., Kikon, N, & Verma P. (2017). Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 32, 100–114. https://doi.org/10.1016/j.scs.2017.02.018.
- Singh, S.K., Mustak, S., Srivastava, P.K., Szaba, S., & Islam, T. (2015). Predicting spatial and Decadal LULC changes through Cellular Automata Markov Chain Models using Earth Observation datasets and Geo-information. Environ. Process, 2(1), 61–78.doi:10.1007/s40710-015-0062-x.
- Tariq, A., Siddiqul, S., Sharifi, A. & Shah, S. (2022). Impact of spatio-temporal land surface temperature on cropping pattern and land use and land cover changes using satellite imagery, Hafizabad District, Punjab Province of Pakistan. Arabian Journal of Geosciences, 15(11), 1045, https://doi.org/10.1007/s12517-022-10238-8.
- Teferi, E., Bewket, W., Uhlenbrook, S., & Wenninger, J. (2013). Understanding recent land use and land cover dynamics in the source region of the Upper Blue Nile, Ethiopia: Spatially explicit statistical modeling of systematic transitions. Agric. Ecosyst. Environ. 165, 98–117. https://doi.org/10.1016/j.agee.2012.11.007.
- Teshome, D.S., Moisa, M.B., Gemeda, D.O. & You, S. (2022). Effect of land use-land cover change on soil erosion and sediment yield in Muger Sub-Basin, Upper Blue Nile Basin, Ethiopia, Land, 11(12), 2173, https://doi.org/10.3390/land11122173.
- UN, (2015). Transforming our world: The 2030 Agenda for Sustainable Development. Retrieved July 22, 2019, from https://sustainabledevelopment.un.org/post2015/transformingourworld.
- United Nations & Nations, U. (2015). Transforming our world. The 2030 agenda for Sustainable Development. In General Assembly 70 session. http://doi.org/10.1007/s13398-014-0173-7.2.
- Usman, U., Yelwa, S.A., Gulumbe, S.U. & Danbaba, A. (2013). Modelling relationship between NDVI and climate variables using Geographical Weighted Regression. American Journal of Applied Mathematics and Statistics, 1(5), 24-28, https://doi.org/10.12691/ajams-1-5-3.
- Verpoorter, C., Kutser, T., & Tranvik, L. (2012). Automated mapping of water bodies using Landsat multispectral data. Limnology and Oceanography Methods, 10(12), https://doi:10.4319/lom.2012.10.1037.
- Wang, Z., Mao, D., Li, L., Jia, M., Dong, Z., Miao, Z., Ren, C., Song, C. (2015). Qunatifying changes in multiple ecosystem services during 1992-2002 in the Sanjiang Plain of China. Sci. Total Environ. 514, 119-130. https://doi:10.1016/j.scitotenv.2015.01.007.
- Yirsaw, E., Wu, W., Shi, X., Ternesgen, H., & Bekeke, B. (2017). Land use/Land cover change modeling and the prediction of subsequent changes in Ecosystem Service values in a coastal area of China, the Su-Xi Chang region, Sustainability, 9(1204), 1-7, https://doi.org/10.3390/su9071204.
- Yuan, T., Yiping, X., Lei, Z., & Danqing, L. (2015). Land use and cover change simulation and prediction in Hangzhou city based on CA-Markov Model. International Proceedings of Chemical, Biological and Environmental Engineering, 90(1), 108-113, https:doi.org/10.7763/IPCBEE.
- Yuan, X., Longhui, L., Xi C, & Hao (2015). Effects of precipitation intensity and temperature on NDVI-based grass change cover over Northern China during the period from 1982 to 2011. Remote Sensing, 7(8), 10164-10183, https://doi.org/10.3390/rs70810164.
- Zainab N, Tariq A. & Siddiqul S. (2021). Development of Web-Based GIS alert system for informing environmental risk of Dengue infections in major cities of Pakistan, Geosfera Indonesia, 6(1), 77, https://doi.org/10.19184/geosi.v6i1.20792.
- Zenebe, M., Berie, H.T., Woldeamanuel, T., Asfaw, Z., Kassa, H. (2018). Land use and land cover changes and the link to land degradation in Arsi Negele district, Central Rift Valley, Ethiopia, 12, 1-9, https://doi.org/10.1016/j.rsase.2018.07.012.
- Zha, Y., Gao, J., Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24:583-594, https:doi.org/10.1080/01431160304987.
- Zhou, W., Zhang, S., Yu, W., Wang, J., & Wang, W. (2017). Effects of urban expansion on forest loss and fragmentation in six mega regions, China. Remote Sensing, https://doi.org/10.3390/rs9100991.
- Ziyad, A.A. & Prakash, S. (2020). A review paper on monitoring environmental consequences of land cover dynamics with the help of geo-informatics technologies. Geosfera Indonesia, 5(3), 364 – 377. https://doi.org/10.19184/geosi.v513.18284.
- Zoungrana, B.J., Conrad, C., Thiel, M., Amekudzi, L.K. & Da E.D. (2018). MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. Journal of Arid Environments, 153, 66-75. https://doi.org/10.1016/j.jaridenv.2018.01.005.
- Zubair, M. & Javed, M. (2018). Land use detection using remote sensing and GIS (A case study of Rawalpindi Division) American Journal of Remote Sensing, 6(1), 39-51, https://doi.org/10.11648/j.airs.20180601.17.