Have a personal or library account? Click to login
A Spatiotemporal and Seasonal Analysis of LST-NDVI Relationship in a Hot Desert City of North Africa Cover

A Spatiotemporal and Seasonal Analysis of LST-NDVI Relationship in a Hot Desert City of North Africa

By: Subhanil Guha and  Himanshu Govil  
Open Access
|Aug 2025

References

  1. Ahmad, B., Najar, M.B., Ahmad, S. (2024). Analysis of LST, NDVI, and UHI patterns for urban climate using Landsat-9 satellite data in Delhi. J Atmos Sol-Terr Phys 265: 106359. https://doi.org/10.1016/j.jastp.2024.106359
  2. Artis, D.A., Carnahan, W.H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12(4): 313–329.
  3. Berger, C., Rosentreter, J., Voltersen, M., Baumgart, C., Schmullius, C., Hese, S. (2017). Spatio-Temporal Analysis of the Relationship Between 2D/3D Urban Site Characteristics and Land Surface Temperature. Remote Sens Environ 193: 225–243.
  4. Bounouh, O., Tarquis, A. M., and Riadh Farah, I. (2022). Investigation of climate change impact on olive trees in Tunisia via MODIS LST and NDVI products and correlation measures, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13255, https://doi.org/10.5194/egusphere-egu22-13255, 2022.
  5. Carlson, T.N., Ripley, D.A. (1997). On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens Environ 62: 241-252. https://doi.org/10.1016/S0034-4257(97)00104-1
  6. Chen, X.L., Zhao, H.M., Li, P.X., Yi, Z.Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2): 133–146. https://doi.org/10.1016/j.rse.2005.11.016
  7. Du, S., Xiong, Z., Wang, Y., Guo, L. (2016). Quantifying the Multilevel Effects of Landscape Composition and configuration on Land Surface Temperature. Remote Sens Environ 178: 84–92.
  8. Estoque, R.C., Murayama, Y., Myint, S.W. (2017). Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci Total Environ 577: 349–359
  9. Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K. et al. (2005). Global Consequences of Land Use. Science 309: 570–574.
  10. Fu, P., Weng, Q. (2016). A Time Series Analysis of Urbanization Induced Land Use and Land Cover Change and Its Impact on Land Surface Temperature With Landsat Imagery. Remote Sens Environ 2016, 175: 205–214.
  11. Ghobadi, Y., Pradhan, B., Shafri, H.Z.M., Kabiri, K. (2014). Assessment of spatial relationship between land surface temperature and land use/cover retrieval from multi-temporal remote sensing data in South Karkheh Sub-basin, Iran. Arab J Geosci 8(1): 525–537. https://doi:10.1007/s12517-013-1244-3.
  12. Gorgani, S.A., Panahi, M., Rezaie, F. (2013). The relationship between NDVI and LST in the Urban area of Mashhad, Iran. International Conference on Civil Engineering Architecture and Urban Sustainable Development. November, Tabriz, Iran.
  13. Govil, H., Guha, S., Diwan, P., Gill, N., Dey, A. (2020). Analyzing Linear Relationships of LST with NDVI and MNDISI Using Various Resolution Levels of Landsat 8 OLI/TIRS Data. In: Sharma N., Chakrabarti A., Balas V. (eds) Data Management, Analytics and Innovation (pp. 171-184). Advances in Intelligent Systems and Computing, vol 1042. Springer, Singapore. https://doi.org/10.1007/978-981-32-9949-8_13
  14. Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X., Briggs, J.M., Grimm, N. (2008). Global Change and the Ecology of Cities. Science 319: 756–760.
  15. Guha, S., Govil, H. (2020). An assessment on the relationship between land surface temperature and normalized difference vegetation index. Environ Dev Sustain https://doi.org/10.1007/s10668-020-00657-6
  16. Guha, S., Govil, H., Diwan, P. (2019). Analytical study of seasonal variability in land surface temperature with normalized difference vegetation index, normalized difference water index, normalized difference built-up index, and normalized multiband drought index. J Appl Remote Sens 13(2): 024518. https://doi.org/1010.1117/1.JRS.13.024518
  17. Guha, S., Govil, H., Gill, N., Dey, A. (2020). Analysing the Capability of NCI Technique in Change Detection Using High-and Medium-Resolution Multispectral Data. Geoecology of Landscape Dynamics, Springer, Singapore, 133-147. https://doi.org/10.1007/978-981-15-2097-6_10
  18. Hao, X., Li, W., Deng, H. (2016). The oasis effect and summer temperature rise in arid regions-case study in Tarim Basin. Sci Rep 6: 35418. https://doi.org/10.1038/srep35418
  19. He, B.J., Zhao, Z.Q., Shen, L.D., Wang, H.B., Li, L.G., He, B.J. (2019). An Approach to Examining Performances of cool/hot Sources in mitigating/Enhancing Land Surface Temperature under Different Temperature Backgrounds Based on Landsat 8 Image. Sustain Cities Soc 44: 416–427.
  20. Hou, G.L., Zhang, H.Y., Wang, Y.Q., Qiao, Z.H., Zhang, Z.X. (2010). Retrieval and Spatial Distribution of Land Surface Temperature in the Middle Part of Jilin Province Based on MODIS Data. Sci Geogr Sin 30: 421–427, https://www.earthexplorer.usgs.gov
  21. Kalnay, E., Cai, M. (2003). Impact of Urbanization and Land-Use Change on Climate. Nat Cell Boil 423: 528–531.
  22. Liang, B.P., Li, Y., Chen, K.Z. (2012). A Research on Land Features and Correlation between NDVI and Land Surface Temperature in Guilin City. Remote Sens Tech Appl 27: 429–435.
  23. Liu, H., Zhan, Q., Yang, C., Wang, J. (2018). Characterizing the Spatio-Temporal Pattern of Land Surface Temperature through Time Series Clustering: Based on the Latent Pattern and Morphology. Remote Sens 10: 654.
  24. Nigatu, W., Dick, Ø.B., Tveite, H. (2014). GIS Based Mapping of Land Cover Changes Utilizing Multi-Temporal Remotely Sensed Image Data in Lake Hawassa Watershed, Ethiopia. Environ Monit Assess 186(3): 1765–1780. https://doi.org/10.1007/s10661-013-3491-x.
  25. Patz, J.A., Campbell-Lendrum, D., Holloway, T., Foley, J.A. (2005). Impact of Regional Climate Change on Human Health. Nat Cell Boil 438: 310–317.
  26. Peng, J., Ma, J., Liu, Q., Liu, Y., Hu, Y., Li, Y., Yue, Y. (2018a). Spatial-Temporal Change of Land Surface Temperature across 285 Cities in China: An Urban-Rural Contrast Perspective. Sci Total Environ 635: 487–497
  27. Peng, J., Jia, J., Liu, Y., Li, H., Wu, J. (2018b). Seasonal Contrast of the Dominant Factors for Spatial Distribution of Land Surface Temperature in Urban Areas. Remote Sens Environ 215: 255–267.
  28. Peng, J., Xie, P., Liu, Y., Ma, J. (2016). Urban Thermal Environment Dynamics and Associated Landscape Pattern Factors: A Case Study in the Beijing Metropolitan Region. Remote Sens Environ 173: 145–155.
  29. Qin, Z.H., Karnieli, A., Barliner, P. (2001). A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region. Int J Remote Sens 22(18): 3719-3746. https://doi:10.1080/01431160010006971
  30. Sandholt, I., Rasmussen, K., Andersen, J. (2002). A simple interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status. Remote Sens Environ 79: 213-224. https://doi.org/10.1016/s0034-4257(01)00274-7
  31. Sobrino, J.A., Raissouni, N., Li, Z. (2001). A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens Environ 75(2): 256–266. https://doi.org/10.1016/S0034-4257(00)00171-1
  32. Sobrino, J.A., Jimenez-Munoz, J.C., Paolini, L. (2004). Land surface temperature retrieval from Landsat TM5. Remote Sens Environ 9: 434–440. https://doi:10.1016/j.rse.2004.02.003
  33. Sun, D., Kafatos, M. (2007). Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys Res Lett 34, L24406. https://doi:10.1029/2007GL031485
  34. Tran, D.X., Pla, F., Latorre-Carmona, P., Myint, S.W., Caetano, M., Kieu, H.V. (2017). Characterizing the Relationship Between Land Use Land Cover Change and Land Surface Temperature. ISPRS J Photogramm Sens 124: 119–132.
  35. Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2): 127–150.
  36. Ullah, W., Ahmad, K., Ullah, S., Tahir, A.A., Javed, M.F., Nazir, A., Abbasi, A.M., Aziz, M., Mohamed, A. (2023). Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon 9(2): e13322. https://doi.org/10.1016/j.heliyon.2023.e13322.
  37. Weng, Q. (2009). Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: Methods, Applications, and Trends. ISPRS J Photogramm Sens 64: 335–344.
  38. Weng, Q.H., Lu, D.S., Schubring, J. (2004). Estimation of Land Surface Temperature– Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sens Environ 89: 467-483. https://doi:10.1016/j.rse.2003.11.005
  39. Yuan, X., Wang, W., Cui, J., Meng, F., Kurban, A., De Maeyer, P. (2017). Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia. Sci Rep 7(1): 3287. https://doi.org/10.1038/s41598017034322
  40. Yue, W., Xu, J., Tan, W., Xu, L. (2007). The Relationship between Land Surface Temperature and NDVI with Remote Sensing. Application to Shanghai Landsat 7 ETM+ data. Int J Remote Sens 28: 3205–3226. https://doi.org/10.1080/01431160500306906
  41. Zhou, P., Han, J., Cheng, G., Zhang, B. (2019). Learning Compact and Discriminative Stacked Autoencoder for Hyperspectral Image Classification. IEEE Transa Geosci Remote Sens 57(7): 4823-4833.
DOI: https://doi.org/10.2478/jlecol-2025-0028 | Journal eISSN: 1805-4196 | Journal ISSN: 1803-2427
Language: English
Page range: 75 - 93
Submitted on: Apr 16, 2025
Accepted on: Apr 25, 2025
Published on: Aug 4, 2025
Published by: Czech Society for Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Subhanil Guha, Himanshu Govil, published by Czech Society for Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.