Have a personal or library account? Click to login
Are Open Data Sufficient for Local Urban Green Space Mapping? Insights from the Czech Republic Cover

Are Open Data Sufficient for Local Urban Green Space Mapping? Insights from the Czech Republic

Open Access
|Aug 2025

References

  1. AOPK, (2013). Consolidated Layer of Ecosystems. Version 2013, Nature Conservation Agency of the Czech Republic, Prague.
  2. AOPK, (2021). Consolidated Layer of Ecosystems. Version 2021, Nature Conservation Agency of the Czech Republic, Prague.
  3. Aamodt, G., Nordh, H., Nordø, E. C.A., (2023). Relationships between socio-demographic / socio-economic characteristics and neighbourhood green space in four Nordic municipalities – results from NORDGREEN. Urban Forestry & Urban Greening. 82. doi: 10.1016/j.ufug.2023.127894
  4. Ahern, J., (2007). Green Infrastructure, a spatial solution for cities, in: Novotny, V., Brown, P. (Eds.), Cities of the Future (pp. 267–283). IWA Publishing, London.
  5. Al-Taei, A.I., Alesheikh, A.A., Boloorani, A.D., (2023). Land use/land cover change analysis using multi-temporal remote sensing data: a case study of Tigris and Euphrates Rivers Basin. Land. 12 (5), 1101. doi: 10.3390/land12051101
  6. Benedict, M. A., McMahon, E. T., (2006). Green Infrastructure: Linking Landscapes and Communities. Island Press. ISBN 1-59726-027-4
  7. Bobáľová, H., Falťan, V., Benová, A., Kožuch, M., Kotianová, M., Petrovič, F., (2024). Measuring the quality and accessibility of urban greenery using free data sources: A case study in Bratislava, Slovakia. Urban Forestry & Urban Greening. 93, 128217.
  8. CUZK, 2020. ZABAGED® - topography. Available from https://geoportal.cuzk.cz/
  9. ČSÚ, 2021. Sčítání lidu, domů a bytů v Česku.
  10. European Commission, (2013). Green Infrastructure. Retrieved August 11, 2013, from https://ec.europa.eu/environment/nature/ecosystems/index_en.htm
  11. European Commission, (2023). Nature Restoration Law. Retrieved June 13, 2013, from https://environment.ec.europa.eu/topics/nature-and-biodiversity/nature-restoration-law_en
  12. ESRI, (2020). ArcGIS Desktop: Release 10.8. Environmental Systems Research Institute, Redlands, CA.
  13. Elmqvist, T., Setälä, H., Handel, S.N., van der Ploeg, S., Aronson, J., Blignaut, J.N., Gómez-Baggethun, E., Nowak, D.J., Kronenberg, J., de Groot, R., (2015). Benefits of restoring ecosystem services in urban areas. Current Opinion in Environmental Sustainability. 14, 101–108. doi: 10.1016/j.cosust.2015.05.001
  14. Feltynowski, M., Kronenberg, J., Bergier, T., Kabisch, N., Łaszkiewicz, E., Strohbach, M.W., (2018). Challenges of urban green space management in the face of using inadequate data. Urban Forestry and Urban Greening. 31, 56–66. doi: 10.1016/j.ufug.2017.12.003
  15. Fischer, L.K., Neuenkamp, L., Lampinen, J., Tuomi, M., Alday, J.G., Bucharova, A., Cancellieri, A., Casado-Arzuaga, I., Čeplová, N., Cerveró, L., Deák, B., Eriksson, O., … Klaus, V.H., (2020). Public attitudes towards biodiversity-friendly greenspace management in Europe. Conservation Letters. 13 (4), e12718.
  16. Frélichová, j., Vačkář, D., Pártl, A., Loučková, B., Harmáčková, Z.V., Lorencová, E., (2014). Integrated assessment of ecosystem services in the Czech Republic. Ecosystem Services. 8, 110–117.
  17. Green, T.L., Kronenberg, J., Andersson, E., Elmqvist, T., Gómez-Baggethun, E., (2016). Insurance Value of Green Infrastructure in and Around Cities. Ecosystems. 19, 1051–1063.
  18. Hansmann, R., Hug, S.M., Seeland, K., (2007). Restoration and stress relief through physical activities in forest and parks. Urban Forestry & Urban Greening. 5 (4), 213–225. doi: 10.1016/j.ufug.2007.08.004
  19. Horáková, K., Mertl, J., Bašistová, J., Koblížková, E., (2022). Využití evropských dat krajinného pokryvu k posouzení stavu a vývoje urbanizovaných území Česka. Urbanismus a územní rozvoj. 25 (2), 9–20.
  20. Hua, J., Cai, M., Shi, Y., Ren, Ch., Xie, J., Chung, L.Ch.H., Lu, Y., Chen, L., Yu, Z., Webster, Ch., (2022). Investigating pedestrian-level greenery in urban forms in a high-density coty for urban planning. Sustainable Cities and Society. 80, 103755.
  21. Jo, H.K., McPherson, E.G., (1995). Carbon storage and flux in urban residential greenspace. Journal of Environmental Management. 45 (2), 109–133. doi: 10.1006/jema.1995.0062 Kabisch, N., Haase, D., (2014). Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landscape and Urban Planning. 122, 129–139. doi: 10.1016/j.landurbplan.2013.11.016
  22. Kabisch, N., Strohbach, M., Haase, D., Kronenberg, J., (2016). Green space availability in European cities. Ecological indicators. 70, 586–596.
  23. Kaczynski, A. T., & Henderson, K. A., (2008). Parks and recreation settings and active living: a review of associations with physical activity function and intensity. Journal of Physical Activity and Health. 5 (4), 619–632.
  24. Kim, G., Miller, P.A., Nowak, D., (2016). The value of green infrastructure on vacant and residential land in Roanoke, Virginia. Sustainability. 8, 4. doi: 10.3390/su8040296
  25. Kong, F., Yin, H.W., James, P., Hutyra, L.R., He, H.S., (2014). Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landscape and Urban Planning. 128, 35–47. doi: 10.1016/j.landurbplan.2014.04.018
  26. Kopecká, M., Szatmári, D., Rosina, K., (2017). Analysis of urban green spaces based on Sentinel-2A: Case studies from Slovakia. Land. 6, 25. doi:10.3390/land6020025
  27. Lafortezza, R., Carrus, G., Sanesi, G., Davies, C., (2009). Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban Forestry Urban & Greening. 8 (20), 97–108. doi: 10.1016/j.ufug.2009.02.003
  28. Łaszkiewicz, E., Wolff, M., Andersson, E., Kronenberg, J., Barton, D.N., Haase, D., Langemeyer, J., Baró, F., McPhearson, T., (2022). Greenery in urban morphology: a comparative analysis of differences in urban green space accessibility for various urban structures across European cities. Ecology & Society. 27 (3), 22. doi: 10.5751/ES-13453-270322
  29. Li, X., Zhang, C., Li, W., Ricard, R., Meng, Q., Zhang, W., (2015). Assessing street-level urban greenery using Google Street view and a modified green view index. Urban Forestry & Urban Greening. 14, 675–685.
  30. Liao, Y., Zhou, Q., Jing, X., (2021). A comparison of global and regional open datasets for urban greenspace mapping. Urban Forestry & Urban Greening. 62. doi.org/10.1016/j.ufug.2021.127132
  31. Ludwing, Ch., Zipf, A., (2019). Exploring regional differences in the representation of urban green spaces in OpenStreetMap. Proceedings of the Geographical and Cultural Aspects of Geo-Information: Issues and Solutions. AGILE 2019 Workshop, June 17th 2019, Limassol, Cyprus.
  32. MA, (2005). Ecosystems and human well-being: synthesis. Millenium Ecosystem Assessment, World Resources Institute, Island Press, Washington.
  33. Morar, T., Radoslav, R., Spiridon, L.C.,Păcurar, L., (2014). Assessing pedestrian accessibility to green space using GIS. Transylvanian Rev. Adm. Sci. 10, 116–139.
  34. Nowak, D.J., Hirabayashi, S., Bodine, A., Greenfield, E., (2014). Tree and forest effects on air quality and human health in the United States. Environmental Pollution. 193, 119–129. doi: 10.1016/j.envpol.2014.05.028
  35. Pauleit, S., Liu, L., Ahern, J., Kazmierczak, A., (2011). Multifunctional green infrastructure planning to promote ecological services in the city, in: Niemelä, J. (Ed.), Handbook of Urban Ecology (pp. 272–285). University Press, Oxford.
  36. Pauleit, S., Hansen, R., Rall, E.L., Zölch, T., Andersson, E., Luz, A.C., Szaraz, L., Tosicz, I., Vierikko, K., (2017). Urban Landscapes and Green Infrastructure. Environmental Sciences. Oxford University Press, USA. doi: 10.1093/acrefore/9780199389414.013.23
  37. Pauleit, S., Ambrose-Oji, B., Andersson, E., Anton, B., Buijs, A., Haase, D., Elands, B., Hansen, R., Kowarik, I., Kronenberg, J., Mattijssen, T., Olafsson, A.S., Rall, E., van der Jagt A.P.N., van den Bosch C.K., (2019). Advancing urban green infrastructure in Europe: Outcomes and reflections from GREEN SURGE project. Urban Forestry & Urban Greening. 40, 4–16. doi: https://doi.org/10.1016/j.ufug.2018.10.006
  38. Püffel, C., Haase, D., Priess, J., (2018). Mapping ecosystem services on brownfields in Leipzig, Germany. Ecosystem Services. 30, 73–85.
  39. Robinson, S.L., Lundholm, J.T., (2012). Ecosystem services provided by urban spontaneous vegetation. Urban Ecosystems. 15 (3), 545–557. doi: 10.1007/s11252-012-0225-8
  40. Rudolph, M., Velbert, F., Schwenzfeier, S., Kleinebecker, T., Klaus, V.H., (2017). Pattern and potentials of plant species richness in high- and low-maintenance urban grasslands. Applied Vegetation Science. 20, 18–27.
  41. Rupprecht, C.D.D., Byrne, J.A., (2014). Informal urban greenspace: a typology and trilingual systematic review of its role for urban residents and trends in the literature. Urban Forestry & Urban Greening. 13, 597–611. doi: 10.1016/j.ufug.2014.09.002
  42. Rusche, K., Reimer, M., Stichmann, R., (2019). Mapping and assesing green infrastructure connectivity in European city regions. Sustainability. 11. doi: 10.3390/su11061819
  43. Rzotkiewicz, A., Pearson, A.L., Doughberty, B.V., Shortridge, A., Wilson, N., (2018). Systematic review of the use of Google Street View in health research: major themes, strengths, weaknesses and possibilities for future research. Health Place. 52, 240–246.
  44. Schipperijn, J., Stigsdotter, U.K., Randrup, T.B., Troelsen, J., (2010). Influences on the use of urban green spaces – a case study in Odense, Denmark. Urban Forestry & Urban Greening. 9 (1), 25–32. https://doi.org/10.1016/j.ufug.2009.09.002
  45. Sikorska, D., Łaszkiewicz, E., Krauze, K., Sikorski, P., (2020). The role of informal green spaces in reducing inequalities in urban green space availability to children and seniors. Environmental Science and Policy. 108, 144–154. doi: 10.1016/j.envsci.2020.03.007
  46. Skokanová, H., González, I. L., Slach, T., (2020). Mapping green infrastructure elements based on available data, a case study of the Czech Republic. Journal of Landscape Ecology. 13 (1), 85–103.
  47. van Delm, A., Gulinck, H., (2011). Classification and quantification of green in the expanding urban and semi-urban complex: Application of detailed field data and IKONOS-imagery. Ecological Indicators. 11, 52–60.
  48. Wang, X., Liu, J., Liang, CX., Zhao, ZC., Feng, G., Zhang, J., (2021). Biodiversity dataset of vascular plants and birds in Chinese urban greenspace. Ecological Research. 36 (4), 755–761. doi: 10.1111/1440-1703.12240
  49. Wang, J., Zhou, WQ., (2022). More urban greenspace, lower temperature? Moving beyond net change in greenspace. Agricultural and forest meterology. 322. doi: 10.1016/j.agrformet.2022.109021
  50. Wang, R., Helbich, M., Yao, Y., Zhang, J., Liu, P., Yuan, Y., Liu, Y., (2019a). Urban greenery and mental wellbeing in adults: Cross-sectional mediation analyses on multiple pathways across different greenery measures. Environmental Research. 176, 108535. doi: 10.1016/j.envres.2019.108535
  51. Wang, J., Zhou, WQ, Wang, J., Qian, YG, (2019b). From quantity to quality: enhanced understanding of the changes in urban greenspace. Landscape Ecology. 34 (5), 1145-1160. doi: 10.1007/s10980-019-00828-5
  52. WHO, (2017). Urban green spaces: A brief for action. Regional Office for Europe. Wicht, M., Kuffer, M., (2019). The continuous built-up area extracted from ISS night-time lights to compare the amount of urban green areas across European cities. European Journal of Remote Sensing. 52 (sup2), 58–73. doi: 10.1080/22797254.2019.1617642
  53. Yu, D., Xun, B., Shi, P., Shao, H., Liu, Y., (2012). Ecological restoration planning based on connectivity in an urban area. Ecological Engineering. 46, 24–33. doi: 10.1016/j.ecoleng.2012.04.033
  54. Zhang, K., Chen, M., (2024). Multi-method analysis of urban green space accessibility: Influences of land use, greenery types, and individual characteristics factors. Urban Forestry and Urban Greening. 96 (2–3), 128366. doi: 10.1016/j.ufug.2024.128366
  55. Zhang, Z., Meerow, S., Newell, J.P., Lindquist, M., (2019). Enhancing landscape connectivity through multifunctional green infrastructure corridor modelling and design. Urban Forestry & Urban Greening. 38, 305–317.
  56. Zhou, Q., Liao, Y., Wang, J., (2022). Mapping global urban greenspace: An analysis based on open land-cover data. Urban Forestry and Urban Greening. 74, 127638. doi: 10.1016/j.ufug.2022.127638
  57. AOPK, (2021). Consolidated Layer of Ecosystems. Version 2021. Retrieved January 25, 2024, from: https://data.nature.cz/ds/101.
  58. CUZK, (2024). Cadastre data. Retrieved January 25, 2024, from: https://services.cuzk.cz/shp/ku/epsg-5514/ (accessed 25 January 2024).
  59. CUZK, (2020). ZABAGED® – topography. Available from https://geoportal.cuzk.cz/ Retrieved Machr 15, 2021, from: https://atom.cuzk.cz/).
DOI: https://doi.org/10.2478/jlecol-2025-0026 | Journal eISSN: 1805-4196 | Journal ISSN: 1803-2427
Language: English
Page range: 20 - 37
Submitted on: Dec 10, 2024
Accepted on: Jun 3, 2025
Published on: Aug 4, 2025
Published by: Czech Society for Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Katarína Demková, Marie Sýkora, Lucie Medková, Alois Vokoun, Eva Sojková, published by Czech Society for Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.