Have a personal or library account? Click to login
Assessing Burnt Area Severity in the Critical Zone Monitoring Site of a Philippine Natural Park Cover

Assessing Burnt Area Severity in the Critical Zone Monitoring Site of a Philippine Natural Park

Open Access
|Apr 2025

References

  1. Adagbasa, G. E., Adelabu, S. A., & Okello, T. W. (2018). Spatio-temporal assessment of fire severity in a protected and mountainous ecosystem. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 6572-6575). IEEE. https://doi.org/10.1109/IGARSS.2018.8518268
  2. Andersen, A. N., Cook, G. D., Corbett, L. K., Douglas, M. M., Eager, R. W., Russell‐Smith, J., Setterfield, S.A., Williams, R.J., & Woinarski, J. C. (2005). Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment. Austral ecology, 30(2), 155-167. https://doi.org/10.1111/j.1442-9993.2005.01441.x
  3. Bohlman, G. N., North, M., & Safford, H. D. (2016). Shrub removal in reforested post-fire areas increases native plant species richness. Forest Ecology and Management, 374, 195-210. https://doi.org/10.1016/j.foreco.2016.05.008
  4. Bowman, D. M., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’antonio, C. M., Defries, R., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Mack, M., Moritz, M.A., Pyne, S., Roos, C.I., Scott, A.C., Sodhi, N.S., & Swetnam, T. W. (2011). The human dimension of fire regimes on Earth. Journal of biogeography, 38(12), 2223-2236. https://doi.org/10.1111/j.1365-2699.2011.02595.x
  5. Boyles, R., Schutz, E., & de Leon, J. (2016). Bubalus mindorensis. The IUCN Red List of Threatened Species, 2016, e. T3127A50737640.
  6. Buizer, M., & Kurz, T. (2016). Too hot to handle: Depoliticisation and the discourse of ecological modernisation in fire management debates. Geoforum, 68, 48-56. https://doi.org/10.1016/j.geoforum.2015.11.011
  7. Calkin, D. E., Thompson, M. P., & Finney, M. A. (2015). Negative consequences of positive feedbacks in US wildfire management. Forest Ecosystems, 2, 1-10. https://doi.org/10.1186/s40663-015-0033-8
  8. Carreon-Lagoc, J. (1994). The NIPAS Act of 1992. Aqua Farm News, 12(3), 8-9.
  9. Dhakal, S., Shrestha, B. B., Sharma, K. P., Paudel, S., & Siwakoti, M. (2024). Grasslands are more vulnerable to plant invasions than forests in south-central Nepal. Environmental Challenges, 15, 100929. https://doi.org/10.1016/j.envc.2024.100929
  10. Eales, J., Haddaway, N. R., Bernes, C., Cooke, S. J., Jonsson, B. G., Kouki, J., Petrokofsky, G., & Taylor, J. J. (2018). What is the effect of prescribed burning in temperate and boreal forest on biodiversity, beyond pyrophilous and saproxylic species? A systematic review. Environmental Evidence, 7, 1-33. https://doi.org/10.1186/s13750-018-0131-5
  11. Fernandes, P. M., Davies, G. M., Ascoli, D., Fernández, C., Moreira, F., Rigolot, E., Stoof, C.R., Vega, J.A., & Molina, D. (2013). Prescribed burning in southern Europe: developing fire management in a dynamic landscape. Frontiers in Ecology and the Environment, 11(1), 4-14. https://doi.org/10.1890/120298
  12. Freeman, J., Kobziar, L., Rose, E. W., & Cropper, W. (2017). A critique of the historical‐fire‐regime concept in conservation. Conservation Biology, 31(5), 976-985. https://doi.org/10.1111/cobi.12942
  13. Galizia, L. F., Barbero, R., Rodrigues, M., Ruffault, J., Pimont, F., & Curt, T. (2023). Global warming reshapes European pyroregions. Earth’s Future, 11(5), e2022EF003182. https://doi.org/10.1029/2022EF003182
  14. García, M. L., & Caselles, V. (1991). Mapping burns and natural reforestation using Thematic Mapper data. Geocarto International, 6(1), 31-37. https://doi.org/10.1080/10106049109354290
  15. Gonzalez, J. C. T., & Dans, A. T. L. (1998). Birds and mammals of the fragmented forests along the Anahawin River, Mt. Iglit-Baco National Park, Mindoro Island, Philippines. Sylvatrop: the technical journal of Philippine Ecosystems and Natural Resources, 8(1-2).
  16. Gonzalez, J.C.T., Dans, A.T.L. and Afuang, L.E. (1999) Rapid Island-Wide Survey of Terrestrial Fauna and Flora on Mindoro Island, Philippines. Mindoro Biodiversity Conservation Programme.
  17. He, T., Lamont, B. B., & Pausas, J. G. (2019). Fire as a key driver of Earth’s biodiversity. Biological Reviews, 94(6), 1983-2010. https://doi.org/10.1111/brv.12544
  18. Jones, G. M., & Tingley, M. W. (2022). Pyrodiversity and biodiversity: A history, synthesis, and outlook. Diversity and Distributions, 28(3), 386-403. https://doi.org/10.1111/ddi.13280
  19. Jung, C., Kim, J. W., Marquardt, T., & Kaczmarek, S. (2010). Species richness of soil gamasid mites (Acari: Mesostigmata) in fire-damaged mountain sites. Journal of Asia-Pacific Entomology, 13(3), 233-237. https://doi.org/10.1016/j.aspen.2010.04.001
  20. Kelly, L. T., Giljohann, K. M., Duane, A., Aquilué, N., Archibald, S., Batllori, E., Bennett, A.F., Buckland, S.T., Canelles, Q., Clarke, M.F., Fortin, M.J., Hermoso, V., Herrando, S., Keane, R.E., Lake, F.K., McCarthy, M.A., Morán-Ordóñez, A., Parr, C.L., Pausas, J.G., Penman, T.D., Regos, A., Rumpff, L., Santos, J.L., Smith, A.L., Syphard, A.D., Tingley, M.W., & Brotons, L. (2020). Fire and biodiversity in the Anthropocene. Science, 370(6519), eabb0355. https://doi.org/10.1126/science.abb0355
  21. Key, C. H., & Benson, N. C. (2006). Landscape assessment (LA). FIREMON: Fire effects monitoring and inventory system, 164, LA-1.
  22. Kirchhoff, C., Callaghan, C. T., Keith, D. A., Indiarto, D., Taseski, G., Ooi, M. K., Le Breton, T.D., Mesaglio, T., Kingsford, R.T., & Cornwell, W. K. (2021). Rapidly mapping fire effects on biodiversity at a large-scale using citizen science. Science of the Total environment, 755, 142348. https://doi.org/10.1016/j.scitotenv.2020.142348
  23. Kovář, P., Štefánek M., and J. Mrázek (2011). “Responses of vegetation stages with woody dominants to stress and disturbance during succession on abandoned tailings in cultural landscape.” Journal of Landscape Ecology 4 (2), 35-48. https://doi.org/10.2478/v10285-012-0037-9
  24. Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., & Luce, C. H. (2016). A review of the relationships between drought and forest fire in the United States. Global change biology, 22(7), 2353-2369. https://doi.org/10.1111/gcb.13275
  25. McCaw, L., Hamilton, T., & Rumley, C. (2005). Application of fire history records to contemporary management issues in south-west Australian forests. In 6th National Conference of the Australian Forest History Society Inc (pp. 555-564). Rotterdam, The Netherlands: Millpress Science Publishers.
  26. Merritt, M. L. (1908). The forests of Mindoro (No. 8). Bureau of Printing.
  27. Miller, J. D., & Thode, A. E. (2007). Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote sensing of Environment, 109(1), 66-80. https://doi.org/10.1016/j.rse.2006.12.006
  28. Murphy, K. A., Reynolds, J. H., & Koltun, J. M. (2008). Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests. International Journal of Wildland Fire, 17(4), 490-499. https://doi.org/10.1071/WF08050
  29. Nasi, R., Dennis, R., Meijaard, E., Applegate, G., & Moore, P. (2002). Forest fire and biological diversity. UNASYLVA-FAO-, 36-40.
  30. Nitschke, C. R., & Innes, J. L. (2007). Interactions between fire, climate change and forest biodiversity. CABI Reviews, (2006), 9-pp. https://doi.org/10.1079/PAVSNNR2006106
  31. Pandey, V.C., Bajpai, O., Pandey, D.N., Singh, N. (2015). Saccharum spontaneum: an underutilized tall grass for revegetation and restoration programs. Genetic Resources and Crop Evolution, 62(3), 443-450. https://doi.org/10.1007/s10722-014-0208-0
  32. Parker, B. M., Lewis, T., & Srivastava, S. K. (2015). Estimation and evaluation of multi-decadal fire severity patterns using Landsat sensors. Remote sensing of Environment, 170, 340-349. https://doi.org/10.1016/j.rse.2015.09.014
  33. Parr, C. L., & Andersen, A. N. (2006). Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conservation biology, 20(6), 1610-1619. https://doi.org/10.1111/j.1523-1739.2006.00492.x
  34. Petermann, J. S., & Buzhdygan, O. Y. (2021). Grassland biodiversity. Current Biology, 31(19), R1195-R1201. https://doi.org/10.1016/j.cub.2021.06.060
  35. Penman, T. D., Bradstock, R. A., & Price, O. (2012). Modelling the determinants of ignition in the Sydney Basin, Australia: implications for future management. International Journal of Wildland Fire, 22(4), 469-478. https://doi.org/10.1071/WF12027\
  36. Santos, F. M., Terra, G., Piotto, D., & Chaer, G. M. (2021). Recovering ecosystem functions through the management of regenerating community in agroforestry and plantations with Khaya spp. in the Atlantic Forest, Brazil. Forest Ecology and Management, 482, 118854. https://doi.org/10.1016/j.foreco.2020.118854
  37. Santos, S. M. B. D., Bento-Gonçalves, A., Franca-Rocha, W., & Baptista, G. (2020). Assessment of burned forest area severity and postfire regrowth in chapada diamantina national park (Bahia, Brazil) using dnbr and rdnbr spectral indices. Geosciences, 10(3), 106. https://doi.org/10.3390/geosciences10030106
  38. Savadogo, P., Tiveau, D., Sawadogo, L., & Tigabu, M. (2008). Herbaceous species responses to long-term effects of prescribed fire, grazing and selective tree cutting in the savanna-woodlands of West Africa. Perspectives in Plant Ecology, Evolution and Systematics, 10(3), 179-195. https://doi.org/10.1016/j.ppees.2008.03.002
  39. Schepers, L., Haest, B., Veraverbeke, S., Spanhove, T., Borre, J. V., & Goossens, R. (2014). Burned area detection and burn severity assessment of a heathland fire in Belgium using airborne imaging spectroscopy (APEX). Remote Sensing, 6(3), 1803-1826. https://doi.org/10.3390/rs6031803
  40. Schmerbeck, J., & Seeland, K. (2007). Fire supported forest utilisation of a degraded dry forest as a means of sustainable local forest management in Tamil Nadu/South India. Land Use Policy, 24(1), 62-71. https://doi.org/10.1016/j.landusepol.2006.01.001
  41. Soverel, N. O., Perrakis, D. D., & Coops, N. C. (2010). Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sensing of Environment, 114(9), 1896-1909. https://doi.org/10.1016/j.rse.2010.03.013
  42. Stephens, S. L., Adams, M. A., Handmer, J., Kearns, F. R., Leicester, B., Leonard, J., & Moritz, M. A. (2009). Urban–wildland fires: how California and other regions of the US can learn from Australia. Environmental Research Letters, 4(1), 014010. https://doi.org/10.1088/1748-9326/4/1/014010
  43. Teobaldo, D., & Baptista, G. M. D. E. (2016). Measurement of severity of fires and loss of carbon forest sink in the conservation units at Distrito Federal. Revista Brasileira de Geografia 9, 250-264.
  44. Tomchenko, O. V., Khyzhniak, A. V., Sheviakina, N. A., Zahorodnia, S. A., Yelistratova, L. A., Yakovenko, M. I., & Stakhiv, I. R. (2023). Assessment and monitoring of fires caused by the War in Ukraine on Landscape scale. Journal of Landscape Ecology, 16(2), 76-97. https://doi.org/10.2478/jlecol-2023-0011
  45. Valkó, O., & Deák, B. (2021). Increasing the potential of prescribed burning for the biodiversity conservation of European grasslands. Current Opinion in Environmental Science & Health, 22, 100268. https://doi.org/10.1016/j.coesh.2021.100268
  46. Veraverbeke, S., Somers, B., Gitas, I., Katagis, T., Polychronaki, A., & Goossens, R. (2012). Spectral mixture analysis to assess post-fire vegetation regeneration using Landsat Thematic Mapper imagery: Accounting for soil brightness variation. International Journal of Applied Earth Observation and Geoinformation, 14(1), 1-11. https://doi.org/10.1016/j.jag.2011.08.004
  47. Vergara, D. C. D. M., Canlas, C. P. I., & Blanco, A. C. (2024). Mapping and assessment of burned areas in Rizal, Palawan using SAR burned and vegetation indices. Proceedings of SPIE, Eighth Geoinformation Science Symposium 2023: Geoinformation Science for Sustainable Planet, 12977. https://doi.org/10.1117/12.3009673
  48. Weir, J. K., Sutton, S., & Catt, G. (2020). The theory/practice of disaster justice: Learning from indigenous peoples’ fire management. Natural hazards and disaster justice: Challenges for Australia and its neighbours, 299-317. https://doi.org/10.1007/9
  49. Wiebe, K. L. (2001). Microclimate of tree cavity nests: is it important for reproductive success in Northern Flickers? The Auk, 118(2), 412-421. https://doi.org/10.1093/auk/118.2.412
DOI: https://doi.org/10.2478/jlecol-2025-0020 | Journal eISSN: 1805-4196 | Journal ISSN: 1803-2427
Language: English
Page range: 62 - 73
Submitted on: Dec 7, 2024
Accepted on: Mar 11, 2025
Published on: Apr 30, 2025
Published by: Czech Society for Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Pauline Angela Sobremonte-Maglipon, Almyt A. Poblete, Nikki Heherson A. Dagamac, published by Czech Society for Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.