Have a personal or library account? Click to login
Development of Novel Soil Salinity Spectral Index Using Remotely Sensed Data: A Case Study on Balod District, Chhattisgarh, India Cover

Development of Novel Soil Salinity Spectral Index Using Remotely Sensed Data: A Case Study on Balod District, Chhattisgarh, India

Open Access
|Mar 2025

References

  1. Abuelgasim, A., & Ammad, R. (2019). Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data. Remote Sensing Applications: Society and Environment, 13, 415–425. https://doi.org/10.1016/j.rsase.2018.12.010.
  2. Ankana (2016). Land and Forest Management by Land Use/ Land Cover Analysis and Change Detection Using Remote Sensing and GIS. Journal of Landscape Ecology, Sciendo, vol. 9 no. 1, pp. 63-77. https://doi.org/10.1515/jlecol-2016-0005.
  3. Shahrayini, E., Noroozi, A.A. (2022). Modeling and Mapping of Soil Salinity and Alkalinity Using Remote Sensing Data and Topographic Factors: A Case Study in Iran. Environ Model Assess 27, 901–913. https://doi.org/10.1007/s10666-022-09823-8.
  4. Bandak, S., Movahedi-Naeini, S. A., Mehri, S., & Lotfata, A. (2024). A longitudinal analysis of soil salinity changes using remotely sensed imageries. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-60033-6.
  5. Chen, H., Wu, J., & Xu, C. (2024). Monitoring Soil Salinity Classes through Remote Sensing-Based Ensemble Learning Concept: Considering Scale Effects. Remote Sensing, 16(4). https://doi.org/10.3390/rs16040642.
  6. Douaoui, A. E. K., Nicolas, H., & Walter, C. (2006). Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 134(1–2), 217–230. https://doi.org/10.1016/j.geoderma.2005.10.009.
  7. FAO, (2020). Technical manual of mapping of salt-affected soil, Food and agriculture Organization of United Nations. Retrieved December 12, 2020, from https://openknowledge.fao.org/server/api/core/bitstreams/bc479e71-76c1-4783-ab8e-06acf7fc6c8f/content.
  8. Fathizad, H., Ali Hakimzadeh Ardakani, M., Sodaiezadeh, H., Kerry, R., & Taghizadeh-Mehrjardi, R. (2020). Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran. Geoderma, 365. https://doi.org/10.1016/j.geoderma.2020.114233.
  9. Gad, M. M. E. S., Mohamed, M. H. A., & Mohamed, M. R. (2022). Soil salinity mapping using remote sensing and GIS. Geomatica, 75(4), 295–309. https://doi.org/10.1139/geomat-2021-0015.
  10. Ghasempour, R., Aalami, M. T., Saghebian, S. M., & Kirca, V. S. O. (2024). Analysis of spatiotemporal variations of drought and soil salinity via integrated multiscale and remote sensing-based techniques (Case study: Urmia Lake basin). Ecological Informatics, 81.https://doi.org/10.1016/j.ecoinf.2024.102560.
  11. Gojiya, K. M., Rank, H. D., Chauhan, P. M., Patel, D. V., Satasiya, R. M., & Prajapati, G. V. (2023). Remote Sensing and GIS Applications in Soil Salinity Analysis: A Comprehensive Review. International Journal of Environment and Climate Change, 13(11), 2149–2161. https://doi.org/10.9734/ijecc/2023/v13i113377.
  12. Hihi, S., Rabah, Z. Ben, Bouaziz, M., Chtourou, M. Y., & Bouaziz, S. (2019). Prediction of Soil Salinity Using Remote Sensing Tools and Linear Regression Model. Advances in Remote Sensing, 08(03), 77–88. https://doi.org/10.4236/ars.2019.83005.
  13. IS 14767: 2000. (2000). Determination of the Specific Electrical Conductivity of Soils-Method of Test, Bureau of Indian Standards. Retrieved January 18, 2000, from https://law.resource.org/pub/in/bis/S06/is.14767.2000.pdf.
  14. Khan, N. M., Rastoskuev, V. V, Shalina, E. V, & Sato, Y. (2001). Mapping Salt-affected Soils Using Remote Sensing Indicators-A Simple Approach with the Use of GIS IDRISI. Retrieved June 12, 2002, from https://acrs-aars.org/proceeding/ACRS2001/Papers/AGS-05.pdf.
  15. Khan, S., A. A. (2007). Using Remote Sensing Techniques for Appraisal of Irrigated Soil Salinity. International Congress on Modelling and Simulation, 2632–2638. Retrieved March 2, 2020, from https://www.researchgate.net/publication/237421639.
  16. Kumar, P., & Sharma, P. K. (2020). Soil Salinity and Food Security in India. In Frontiers in Sustainable Food Systems (Vol. 4) (pp. 1 - 10). Frontiers Media S.A. https://doi.org/10.3389/fsufs.2020.533781.
  17. Mandal, A. K. (2022). The need for the spectral characterization of dominant salts and recommended methods of soil sampling and analysis for the proper spectral evaluation of salt affected soils using hyper -spectral remote sensing. Remote Sensing Letters, 13(6), 588–598. https://doi.org/10.1080/2150704X.2022.2059414.
  18. Mandal, U. K., Nayak, D. B., Ghosh, A., Bhardwaj, A. K., Lama, T. D., Mahajan, G. R., Das, B., Nagaraja, M. S., Kuligod, V. B., Rani, P. P., Mal, S., Samui, A., Mahanta, K. K., Mandal, S., Raut, S., & Burman, D. (2023). Delineation of saline soils in coastal India using satellite remote sensing. Current Science, 125(12), 1339–1353. https://doi.org/10.18520/cs/v125/i12/1339-1353.
  19. Mohammadifar, A., Gholami, H., & Golzari, S. (2022). Assessment of the uncertainty and interpretability of deep learning models for mapping soil salinity using Deep Quantreg and game theory. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-19357-4.
  20. Rani, A., Kumar, N., Sinha, N. K., & Kumar, J. (2022). Identification of salt-affected soils using remote sensing data through random forest technique: a case study from India. Arabian Journal of Geosciences, 15(5). https://doi.org/10.1007/s12517-022-09682-3.
  21. Sahab, S., Suhani, I., Srivastava, V., Chauhan, P. S., Singh, R. P., & Prasad, V. (2021). Potential risk assessment of soil salinity to agroecosystem sustainability: Current status and management strategies. In Science of the Total Environment (Vol. 764) (pp. 1 - 10). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.144164.
  22. Scudiero, E., Skaggs, T. H., & Corwin, D. L. (2014). Regional scale soil salinity evaluation using Landsat 7, Western San Joaquin Valley, California, USA. Geoderma Regional, 2–3(C), 82–90. https://doi.org/10.1016/j.geodrs.2014.10.004.
  23. Singh, S., Jahan, I., Sharma, A., & Misra, V. K. (2017). Inland Saline Aquaculture-A Hope for Farmers. International Journal of Global Science Research, 4(2). https://doi.org/10.26540/ijgsr.v4.i2.2017.80.
  24. Somvanshi, Shivangi S., et al. (2020). “Unveiling Spatial Variation in Salt Affected Soil of Gautam Buddha Nagar District Based on Remote Sensing Indicators” Journal of Landscape Ecology, vol. 13, no. 1, Sciendo,, pp. 61-84. https://doi.org/10.2478/jlecol-2020-0005.
  25. Wang, J., Ding, J., Yu, D., Teng, D., He, B., Chen, X., Ge, X., Zhang, Z., Wang, Y., Yang, X., Shi, T., & Su, F. (2020). Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Science of the Total Environment, 707. https://doi.org/10.1016/j.scitotenv.2019.136092.
  26. Zhang, Z., Fan, Y., Jiao, Z., Wang, X., & Wu, Q. (2022). Baseline-Based Soil Salinity Index (BSSI): A New Soil Salinity Index for Monitoring Soil Salinization. In International Geoscience and Remote Sensing Symposium (IGARSS) (pp 7791–7794), 2022-July. https://doi.org/10.1109/IGARSS46834.2022.9883453
DOI: https://doi.org/10.2478/jlecol-2025-0013 | Journal eISSN: 1805-4196 | Journal ISSN: 1803-2427
Language: English
Page range: 62 - 81
Submitted on: Nov 22, 2024
Accepted on: Feb 1, 2025
Published on: Mar 28, 2025
Published by: Czech Society for Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Vaibhav Prakashrao Deshpande, Ishtiyaq Ahmad, Chandan Kumar Singh, published by Czech Society for Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.