Have a personal or library account? Click to login
Extensification of Agricultural Land-Use Generates Severe Effects on the Critically Endangered Inter-Andean Dry Forest in the Ecuadorian Andean Landscape Cover

Extensification of Agricultural Land-Use Generates Severe Effects on the Critically Endangered Inter-Andean Dry Forest in the Ecuadorian Andean Landscape

Open Access
|Jan 2024

References

  1. Aguirre, Z., Kvist, L.P., Sánchez, O., (2006). Bosques secos en Ecuador y su diversidad. In M. Moraes, B. Ollgaard, L.P. Kvist, F. Borchsenius, Balslev, H. (Eds.). Botánica Económica de los Andes Centrales La Paz Bolivia: Universidad Mayor de San Andrés (pp. 162-187).
  2. Aguirre, Z., Román, J.L., Montalvo, D., Cevallos, G., Albuja, L., Arguero, A., ... Carvajal, V., (2011). Biodiversidad de los valles secos interandinos del Ecuador. Ecuaoffset, Escuela Politécnica Nacional,Quito-Ecuador.
  3. Arcila, A.M., Valderrama-Ardila, C., Chacón de Ulloa, P., (2012). Estado de fragmentación del bosque seco de la cuenca alta del río Cauca, Colombia. Biota Colombiana. 13, (2) 86-100.
  4. Arévalo-Morocho, C., Jácome-Aguirre, G., Ortega-Andrade, S., Rosales-Enríquez, O., Rodríguez-Echeverry, J., (2023). Evaluación del cambio del paisaje boscoso y su impacto en la distribución de Dipsas elegans en el norte de Ecuador. Investigaciones Geográficas. 79, 231-250. https://doi.org/10.14198/INGEO.23541
  5. Bastin, L., Buchanan, G., Beresford, A., Pekel, J.F., Dubois, G., (2013). Open-source mapping and services for Web-based land-cover validation. Ecological Informatics. 14, 9–16. http://dx.doi.org/10.1016/j.ecoinf.2012.11.013
  6. Bennett, A.F., (2003). Linkages in the landscape: the role of corridors and connectivity in wildlife conservation. IUCN Gland: Switzerland and Cambridge. UK.
  7. Bitters, M.E., Hicks, A., Holtz, S., Acruri, P., Wilson, R., Resasco, J., Dvaies, F., (2022). The dynamic matrix predicts population response to long term experimental forest fragmentation. Landscape Ecology. 37, 1483–1495. https://doi.org/10.1007/s10980-022-01432-w
  8. Brus, J., Pechanec, V., Machar, I., (2017). Depiction of uncertainty in the visually interpreted land cover data. Ecological Informatics. 47, 10-13. https://doi.org/10.1016/j.ecoinf.2017.10.015
  9. Chander, G., Markham, B.L., Helder, D.L., (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment. 113, 893-903. https://doi.org/10.1016/j.rse.2009.01.007.
  10. Chimarro-Cumbal, J., Cué-García, J.L., Arcos-Unigarro, C.R., Paredes-Rodríguez, H.O., (2023). Diversidad florística y estructura del bosque seco en el norte del Ecuador. Revista Cubana de Ciencias Forestales. 11(2), e651.
  11. Cisneros-Heredia, D.F., Almendáriz, A., Yánez-Muñoz, M., (2017). Dipsas elegans. The IUCN Red List of Threatened Species. Retrieved September 28, 2023, from http://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T50951285A50951294.en.
  12. De la Sancha, N., Boyle, S.A., McIntyre, N.E., Brooks, D.M., Yanosky, A., Cuellar-Soto, E., … Stevens, R.D., (2021). The disappearing Dry Chaco, one of the last dry forest systems on earth. Landscape Ecology. 36, 2997–3012. https://doi.org/10.1007/s10980-021-01291-x
  13. Detto, M., Wright, S.J., Calderón, O., Muller-Landau, H.C., (2018). Resource acquisition and reproductive strategies of tropical forest in response to the El Niño–Southern Oscillation. Nature Communications. 9, 913. https://doi.org/10.1038/s41467-018-03306-9
  14. Dexter, K.G., Smart, B., Baldauf, C., Baker, T.R., Bessike Balinga MP., Brienen, S., … Pennington, R.T., (2015). Floristics and biogeography of vegetation in season-ally dry tropical regions. International Forestry Review. 17, 10-32. https://doi.org/10.1505/146554815815834859
  15. Eastman, J.R., (2012). IDRISI Selva Tutorial. IDRISI Production, Clark Labs-Clark University, Worcester, 45.
  16. Echeverría, C., Newton, A., Nahuelhual, L., Coomes, D., Rey-Benayas, J.M., (2012). How landscapes change: integration of spatial patterns and human processes in temperate landscapes of southern Chile. Applied Geography. 32, 822-831. https://doi.org/10.1016/j.apgeog.2011.08.014.
  17. FAO., (2022). Global Forest Resources Assessment 2022: Main Report. Food and Agriculture Organization of the United Nations. Rome. Retrieved February 10, 2023, from https://www.fao.org/forest-resources-assessment/en/
  18. Ferrer-Paris, J.R., Zager, I., Keith, D.A., Oliveira-Miranda, M.A., Rodríguez, J.P., Josse, C., ... Barrow, E., (2018). An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. Conservation Letters. E12623, 1-10. https://DOI:10.1111/conl.12623.
  19. Fischer, J., Lindenmayer, D.B., (2002). The conservation value of small habitat patches: two case studies on birds from southeastern Australia. Biological Conservation. 106, 129-136.
  20. Foli. S., Reed, J., Clendenning. J., Petrokofsky, G., Padoch, C., Sunderland, T., (2015). To what extent does the presence of forests and trees contribute to food production in humid and dry forest landscapes?: a systematic review protocol. Environmental Evidence. http://www.environmentalevidencejournal.org/content/3/1/15
  21. Fontúrbel, F.E., Jiménez, J.E. (2014). Does bird species diversity vary among forest types? A local-scale test in Southern Chile. Science of Nature. 101, 855–859. https://doi.org/10.1007/s00114-014-1222-y
  22. García-Martínez, M., Torralba, M., Quintas-Soriano, C., Kahl, J., Plieninger, T., (2021). Linking food systems and landscape sustainability in the Mediterranean region. Landscape Ecology. 36, 2259-2275. https://doi.org/10.1007/s10980-020-01168-5
  23. García-Navas, V., Martínez-Núñez, C., Tarifa, R., Manzaneda, A.J., Valera, F., Salido, T., … Rey, P.J. (2022). Agricultural extensification enhances functional diversity but not phylogenetic diversity in Mediterranean olive groves: A case study with ant and bird communities. Agriculture, Ecosystem & Environment. 324, 1-9. https://doi.org/10.1016/j.agee.2021.107708
  24. Gasparri, I., Grau, R., (2009). Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). Forest Ecology and Management. 258, 913-921. http://dx.doi:10.1016/j.foreco.2009.02.024
  25. Gómez, R., Monje, C., Aparicio, S., Forero, C., Giraldo, P., (2018). Portafolio Pacífico: Acciones e Inversiones para la Reducción de la Deforestación y Degradación de los bosques en la región del Pacífico. Programa ONU-REDD Colombia y WWF. Bogotá.
  26. Herrera, J.M., (2011). El papel de la matriz en el mantenimiento de la biodiversidad en hábitats fragmentados. De la teoría ecológica al desarrollo de estrategias de conservación. Ecosistemas. 20, (2) 21-34.
  27. Holmgren, M., Scheffer, M., (2001). El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems. 4, (2)151–159. https://doi.org/10.1007/s100210000065
  28. Huete, A.R., (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment. 25, 295-309.
  29. Instituto Nacional de Meteorología e Hidrología., (2005). Estudio Hidrológico del Río Mira. Estudios e Investigaciones Hidrológicas. Quito-Ecuador: INAMHI.
  30. Lindenmayer, D., Franklin, J., (2002). Conserving forest biodiversity: a comprehensive multiscaled approach. Island Press, Washington.
  31. McGarigal, K., Cushman, S., Neel, M., Ene, E., (2013). FRAGSTATS. Spatial pattern analysis program for categorical maps. University of Massachusetts, Amherst. (Landscape Ecology Program). Retrieved June 30, 2023, from http://www.umass.edu/landeco/research/fragstats/fragstats.html.
  32. McIntyre, S., Hobbs, R., (1999). A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conservation Biological. 13, 1282-1292.
  33. Meyfroidt, P., Lambin, E.F., Erb, K.H., Hertel, T.W., (2013). Globalization of land use: distant drivers of land change and geographic displacement of land use. Current Opinion in Environmental Sustainability. 5, (5) 438–444. https://doi.org/10.1016/j.cosust.2013.04.003
  34. Miles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., Kapos, V., Gordon, J.E., (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography. 33, 491-505. https://doi:10.1111/j.1365-2699.2005.01424.x
  35. Mina, M., Messier, C., Duveneck, M., Fortin, M.J., Aquilué, N., (2021). Network analysis can guide resilience-based management in forest landscapes under global change. Ecologial Applications. 31, e222. https://doi.org/10.1002/eap.2221
  36. Ministerio del Ambiente del Ecuador., (2012). Especies forestales de los bosques secos del Ecuador. Bosques Secos en Ecuador y su diversidad, Ministerio del Ambiente, Quito-Ecuador.
  37. Ministerio del Ambiente del Ecuador., (2013). Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Subsecretaría de Patrimonio Natural, Ministerio del Ambiente, Quito-Ecuador.
  38. Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M., Gascon, C., (2011). Global biodiversity conservation: the critical role of hotspots. In F.E. Zachos, Habel, J.C. (Eds.), Biodiversity hotspots: distribution and protection of conservation priority areas (pp. 3–23). Berlin: Springer.
  39. NatureServe & EcoDecision., (2015). Hotspot de Biodiversidad de los Andes Tropicales. Argentina, Bolivia, Chile, Colombia, Ecuador, Perú, Estados Unidos and Venezuela: Partnership Fund Critical Ecosystem.
  40. Neill, D., Pitman, N., (2004). Coursetia gracilis. The IUCN Red List of Threatened Species 2004:e.T45219A10986471. Retrieved February 10, 2023, from https://www.iucnredlist.org/species/45219/10986471
  41. Newton, A.C., (2007). Biodiversity loss and conservation in fragmented forest landscapes: the forests of montane Mexico and temperate South America. Wallingford, Oxford: CABI.
  42. Nguyen, T.A., Ehbrecht, M., Camarretta, N., (2023). Application of point cloud data to assess edge efects on rainforest structural characteristics in tropical Sumatra, Indonesia. Landscape Ecology. 38, 1191–1208. https://doi.org/10.1007/s10980-023-01609-x
  43. Oleas, N., Pitman, N., (2003). Phaedranassa brevifolia. The IUCN Red List of Threatened Species 2003:e.T42809A10754305. Retrieved February 10, 2023, from https://www.iucnredlist.org/species/42809/107543
  44. Peters, T., Drobnik, T., Meyer, H., Rankl, M., Ritcher, M., Rollenbeck, R., … Bendix, J., (2013). Environmental Changes Affecting the Andes of Ecuador. In: Beck, Bendix, J., Beck, E., Bräuning, A., Makeschin, F., Mosandl, R., Scheu, S., Wilcke, W., (eds) Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador. Springer, Quito, pp 19–29.
  45. Pulla, S., Ramaswami, G., Mondal, N., Chitratarak, R., Suresh, H.S., Dattaraja, H.S., … Sukumar, R., (2015). Assessing the resilience of global seasonally dry tropical forests. International Forestry Review, 17, (S2) 90–112. https://doi.org/10.1505/146554815815834796
  46. Quintana, C., Girardello, M., Barfod, A.S., Balslev, S., (2017). Diversity patterns, environmental drivers and changes in vegetation composition in dry inter-Andean valleys. Journal of Plant Ecology. 10, 461-475. https://doi.org/10.1093/jpe/rtw036
  47. Reddy, S., Vazeed, S., Jha, C.S., Diwakar, P.G., Dadhwal, V.K., (2016). Development of national database on long-term deforestation (1930–2014) in Bangladesh. Global and Planetary Change. 139, 173-182. https://doi.org/10.1016/j.gloplacha.2016.02.003
  48. Reese, H., Olsson, H., (2011). C-correction of optical satellite data over alpine vegetation areas: a comparison of sampling strategies for determining the empirical c-parameter. Remote Sensing of Environment. 115, 1387-1400. Doi:org/10.1016/j.rse.2011.01.019.
  49. Rivas, C.A., Guerrero-Casado, J., Navarro-Cerillo, R.M., (2021). Deforestation and fragmentation trends of seasonal dry tropical forest in Ecuador: impact on conservation. Forest Ecosystems. 8, 46. https://doi.org/10.1186/s40663-021-00329-5
  50. Rivas, C., Guerrero-Casado, J., Navarro-Cerrillo, R.M., (2022). A New Combined Index to Assess the Fragmentation Status of a Forest Patch Based on Its Size, Shape Complexity, and Isolation. Diversity. 14, 896. https://doi.org/10.3390/d14110896
  51. Rodríguez-Echeverry, J., Leiton, M., (2021). Pérdida y fragmentación de ecosistemas boscosos nativos y su influencia en la diversidad de hábitats en el hotspot Andes tropicales. Revista Mexicana de Biodiversidad. 92, e923449. https://doi.org/10.22201/ib.20078706e.2021.92.3449
  52. Rowland, D., Blackie, R.R., Powell, B., Djoudi, H., Vergles, E., (2015). Direct Contributions of Dry Forests to Nutrition: A Review. International Forestry Review. 17, (S2) 44–52. DOI:10.1505/146554815815834804
  53. Sabogal, C., de Jong, W., Pokorny, B., Louman, B., (2008). Manejo forestal comunitario en América Latina. Experiencias, lecciones aprendidas y retos para el futuro. Centro para la Investigación Forestal (CIFOR), Bogor, Indonesia.
  54. Santiana, J., Cerón, C., Pitman, N., (2004a). Croton elegans. The IUCN Red List of Threatened Species 2004:e.T45185A10981149. Retrieved February 10, 2023, from https://www.iucnredlist.org/species/45185/10981149.
  55. Santiana, J., Cerón, C., Pitman, N., (2004b). Euphorbia jamesonii. The IUCN Red List of Threatened Species 2004: e.T45180A10980685 Retrieved February 10, 2023, from https://www.iucnredlist.org/species/45180/10980685#geographic-range.
  56. Secretaría Nacional de Planificación y Desarrollo., (2019). Información estadística. Retrieved November 10, 2022, from https://sni.gob.ec/informacion-pnd.
  57. Sistema Nacional de Información., (2019). Mapa de cobertura y uso de la tierra. Retrieved May 21, 2023, from http://sni.gob.ec.
  58. Sunderland, T., Apgaua, D., Baldauf, C., Blackie, R., Colfer, C., Cunningham, A.B., … Wilmé, L., (2015). Global dry forests: a prologue. International Forestry Review. 17, (S2)1-9. https://doi.org/10.1505/146554815815834813
  59. Tapia-Armijos, M.F., Homeier, J., Espinosa, C. I., Leuschner, C., de la Cruz, M., (2015). Deforestation and forest fragmentation in South Ecuador since the 1970s losing a hotspot of biodiversity. PloS One. 10(9), e0133701. Doi:10.1371/journal.pone.0133701.
  60. Tarko, A., Tsendbazar, N.E., Bruin, S., Bregt, A.K., (2021). Producing consistent visually interpreted land cover reference data: learning from feedback. International Journal of Digital Earth. 14, (1) 52-70. https://doi.org/10.1080/17538947.2020.1729878
  61. Thompson, P.L., Rayfield, B., Gonzalez, A., (2017). Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography. 40, 98-108. Doi: 10.1111/ecog.02558.
  62. Werner, F.A., Gradstein, S.R., (2009). Diversity of dry forest epiphytes along a gradient of human disturbance in the tropical Andes. Journal of Vegetation Science. 20, (1)59-68. https://doi.org/10.1111/j.1654-1103.2009.05286.x
  63. Williams, N.S.G., Morgan, J.W., McCarthy, M.A., McDonnell, M.A., (2006). Local extinction of grassland plants: the landscape matrix is more important than patch attributes. Ecology. 87, 3000-3006
DOI: https://doi.org/10.2478/jlecol-2023-0020 | Journal eISSN: 1805-4196 | Journal ISSN: 1803-2427
Language: English
Page range: 132 - 148
Submitted on: Nov 23, 2023
Accepted on: Dec 18, 2023
Published on: Jan 1, 2024
Published by: Czech Society for Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 James Rodríguez-Echeverry, published by Czech Society for Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.