Have a personal or library account? Click to login

Zonal Concept: Landscape Level Parameters and Application

Open Access
|Oct 2023

References

  1. Anon, (2020). ZABAGED® - Výškopis - DMR 4G. Digitální model reliéfu České republiky 4.generace. Retrieved July 23, 2023, from: http://data.europa.eu/88u/dataset/cz-cuzk-dmr4g-v. (In Czech).
  2. Austin, M. P., (2013). Vegetation and Environment: Discontinuities and Continuities. In E. van der Maarel and J. Franklin (Eds.), Vegetation Ecology: Second Edition, (pp. 71–106). John Wiley.
  3. Bailey R. G., (2002). Ecoregion-based Design for Sustainability. Springer-Verlag, New York, USA. 232 p.
  4. Barbosa, W. R., Romero, R. E., de Souza Junior, V. S., Cooper, M., Sartor, L. R., de Moya Partiti, C. S., de Oliviera Jorge, F., Cohen, R., de Jesus, S. L., and Ferreira, T. O. (2015). Effects of slope orientation on pedogenesis of altimontane soils from the Brazilian semi-arid region (Baturite massif, Ceara·). Environ Earth Sci, 73, 3731–3743. https://doi.org/10.1007/s12665-014-3660-4.
  5. Bína, J., Demek, J., (2012). Z nížin do hor: geomorfologické jednotky České republiky. Academia. Praha. 334 p. (In Czech).
  6. Böhner, J., Antonić, O., (2009). Land-Surface Parameters Specific to Topo-Climatology. Developments in Soil Science, 33, 195–226. https://doi.org/10.1016/S0166-2481(08)00008-1
  7. Böhner, J., Selige, T., (2006). Spatial Prediction of Soil Attributes Using Terrain Analysis and Climate Regionalisation. In K. R. McCloy and J. Strobl: SAGA – Analysis and Modelling Applications (Vol. 115, pp. 13-27). Göttinger Geographische Abhandlungen.
  8. Böhner, J., Koethe, R., Conrad, O., Gross, J., Ringeler, A., Selige, T., (2001). Soil regionalisation by means of terrain analysis and process parameterisation. Soil Classification, 7, 213–222.
  9. Box, G. E. P., Cox, D. R., (1964). An Analysis of Transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211–252. http://www.jstor.org/stable/2984418.
  10. Braun-Blanquet, J. (1928). Pflanzensoziologie: Grundzüge der Vegetationskunde: Biologische Studienbücher 7. Julius Springer. Berlin, Germany. 330 p.
  11. Breiman, L., (2001). Random Forest. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324.
  12. Breiman, L., Friedman, J., Stone, C. J., Olshen, R. A., (1984). Classification and Regression Trees. Chapman and Hall. London, UK. 368 p. https://doi.org/10.1201/9781315139470.
  13. Çellek, S., (2020). Effect of the Slope Angle and Its Classification on Landslide. Natural Hazards and Earth System Sciences, 1–23. https://doi.org/10.5194/nhess-2020-87.
  14. Chlupáč, I., (2011). Geologická minulost České republiky (Second Edition). Academia. Praha. 436 p. (In Czech).
  15. Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., Böhner, J., (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015.
  16. CHI, (2022). Czech Hydrometeorological Institute. Climate data of the Czech Republic (1990–2014). https://www.chmi.cz/historicka-data/pocasi/zakladni-informace?l=en.
  17. de Oliviera Junior, J. C., Mucha, N. M., Rodrigues, N. F., Pellegrini, A., and de Paula Souza, L. C., (2022). Topographic attributes to map land use capability of soils derived from basalt. Environmental Earth Sciences, 81(19). https://doi.org/10.21203/rs.3.rs-1551316/v1.
  18. Deng, Y., Wilson, J.P., Bauer, B.O., (2007). DEM resolution dependencies of terrain attributes across a landscape. International Journal of Geographical Information Science, 21(2), 187-213. https://doi.org/10.1080/13658810600894364.
  19. Demek, J., (1987). Obecná geomorfologie. Academia.476 p. (In Czech).
  20. Dokuchaev, V.V., (1883). Russian Chernozem (Russkii Chernozem). Translated from Russian by N. Kaner. Jerusalem: Israel Program for Scientific Translations (1967). Jerusalem, Israel (419 p.). Available from US Department of Commerce, Washington, DC. 419 p.
  21. Doneus, M., (2013). Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. Remote Sensing, 5, 6427–6442. https://doi.org/10.3390/rs5126427.
  22. Dujka, P., Kusbach, A., (2022). Zonal concept in vegetation classification: review. Zprávy lesnického výzkumu, 67(4), 236–245. https://www.vulhm.cz/zlv_online_detail/zonalni-koncept-v-lesnicke-typologii-review/.
  23. Ďuračiová, R., Pružinec, F., (2022). Effects of Terrain Parameters and Spatial Resolution of a Digital Elevation Model on the Calculation of Potential Solar Radiation in the Mountain Environment: A Case Study of the Tatra Mountains. International Journal of Geo-Information, 11(7), 389. https://doi.org/10.3390/ijgi11070389.
  24. Fazlollahi Mohammadi, M., Jalali, S. G. H., Kooch, Y., Said-Pullicino, D., (2016). Slope gradient and shape effects on soil profiles in the northern mountainous forests of Iran. Eurasian Soil Science, 49(12), 1366–1374. https://doi.org/10.1134/S1064229316120061.
  25. Fick, S.E., Hijmans, R.J., (2017). WordClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37: 4302-4315. https://worldclim.org/data/index.html#.
  26. Forest Managament Institute (FMI), (2023). Přehled lesních typů a souborů lesních typů v ČR. Ústav pro hospodářskou úpravu lesů Brandýs nad Labem. https://www.uhul.cz/wp-content/uploads/tabulka-LT_2023_web_FIN.pdf.
  27. Freeman, T. G., (1991). Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences, 17(3), 413-422. https://doi.org/10.1016/0098-3004(91)90048-I.
  28. Gallant, J. C., Dowling, T. I., (2003). A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research, 39(12), 1–13. https://doi.org/10.1029/2002WR001426.
  29. Gömöry, D., Krajmerová, D., Hrivnák, M., Longauer, R., (2020). Assisted migration vs. close-to-nature forestry: what are the prospects for tree populations under climate change? Central European Forestry Journal, 66, 63–70. https://doi.org/10.2478/forj-2020-0008.
  30. Grimm, N. B., Stuart Chaplin III, F., Bierwagen, B., Gonzalez, P., Groffman, P. M., Luo, Y., Melton, F., Nadelhoffer, K., Pairis, A., Raymond, P. A., Schimel, J., Williamson, C. E., (2013). The impacts of climate change on ecosystem structure and function. Front Ecol Environ, 11(9), 474–482. https://doi.org/10.1890/120282.
  31. Guisan, A., Weiss, S. B., Weiss, A. D., (1999). GLM versus CCA spatial modeling of plant species distribution. Plant Ecology, 143, 107–122. https://doi.org/10.1023/A:1009841519580.
  32. Heidrich, J., (2018). Porovnání vybraných edafických kategorií na základě půdních rozborů. In Hrubá, V., Friedl, M. (Eds.), Geobiocenologie a lesnická typologie a jejich aplikace v lesnictví a krajinářství (pp. 43-46). Ústav lesnické botaniky, dendrologie a geobiocenologie, Lesnická a dřevařská fakulta Mendelovy univerzity v Brně, Brno. (In Czech).
  33. Heinrich, R., Conrad, O., (2008). Diffusion, Flow and Concentration Gradient Simulation with SAGA GIS using Cellular Automata Methods. In J. Böhner, T. Blaschke, and L. Montanarella (Eds.), SAGA – Seconds Out. Hamburger Beiträge zur Physischen Geographie und Landschaftsoekologie (pp.29 – 70), 19.
  34. Hills, G. A., (1952). The classification and evaluation of site for forestry. Ontario Department of Lands and Forests, 24, 41 p.
  35. Howitt, D., Cramer, D., (2014). Introduction to Research Methods in Psychology (Fourth Edition). Trans-Atlantic Publications. Philadelphia. 449 p.
  36. Hu, A., Duan, Y., Xu, L., Chang, S., Chen, X., and Hou, F., (2021). Litter decomposes slowly on shaded steep slope and sunny gentle slope in a typical steppe ecoregion. Ecology and Evolution, 11(6), 2461–2470. https://doi.org/10.1002/ece3.6933.
  37. Iwahashi, J., Pike, R. J., (2007). Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, 86(3-4), 409–440. https://doi.org/10.1016/j.geomorph.2006.09.012.
  38. Iwahashi, J., Watanabe, S., Furuya, T., (2001). Landform analysis of slope movements using DEM in Higashikubiki area, Japan. Computers and Geosciences, 27(7), 851–865. https://doi.org/10.1016/S0098-3004(00)00144-8.
  39. Jahn, R., Blume, H. P., Asio, V. B., Schad, O., Langohr, P., Brinkman, R., Nachtergaele, F. O., and Pavel Krasilnikov, R., (2006). Guidelines for soil description (Fourth Edition). Food and Agriculture Organization of the United Nations. Rome. 109 p.
  40. Kaiser, H. F., (1960). The Application of Electronic Computers to Factor Analysis. Educational and Psychological Measurement, 20(1), 141–151. https://doi.org/10.1177/0013164460020001.
  41. Karaman, K., (2019). A Comparative Analysis of Slope Height Using Simple Methods. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(4), 600–609. https://doi.org/10.17714/gumusfenbil.541387.
  42. Kassambara, A., Mundt, F., (2020). Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. https://CRAN.R-project.org/package=factoextra.
  43. Katz, B. M., McSweeney, M., (1980). A multivariate Kruskal-Wallis test with post hoc procedures. Multivariate Behavioral Research, 15(3), 281–297. https://doi.org/10.1207/s15327906mbr1503_4.
  44. Klaschka, J., Kotrč, E., (2004). Klasifikační a regresní lesy. In Antoch, J., Dohnal, G. (Eds.), ROBUST 2004: Sborník prací 13. letní školy JČMF ROBUST 2004 (pp. 177–184). Uspořádané Jednotou českých matematiků a fyziků za podpory KPMS MFF UK a České statistické společnosti ve dnech 7. – 11. června 2004 v Třešti. (In Czech).
  45. Koethe, R., Lehmeier, F., (1996). SARA – System zur Automatischen Relief-Analyse (Second Edition). Dept. of Geography, University of Goettingen, unpublished.
  46. Komprdová, K., (2012). Rozhodovací stromy a lesy. Akademické nakladatelství CERM. Brno. 98 p.(In Czech).
  47. Krajina, V. J., (1965). Biogeoclimatic Zones and Classification of British Columbia. Dept. of Botany, University of British Columbia. Vancouver, Ecology of Western North America 1, 1–17.
  48. Kučera, M., Adolt, R. (Eds.), (2019). Národní inventarizace lesů v České republice – výsledky druhého cyklu 2011–2015. Ústav pro hospodářskou úpravu lesů Brandýs nad Labem. https://nil.uhul.cz/downloads/2019_kniha_nil2_web.pdf.
  49. Kusbach, A., Friedl, M., Zouhar, V., Mikita, T., Šebesta, J., (2017). Assessing Forest Classification in a Landscape-Level Framework: Am Example form Central European Forests. Forests, 8(461), 1–20. https://doi.org/10.3390/f8120461.
  50. Kusbach, A., Šebesta, J., Friedl, M., Zouhar, V., Mikita, T., (2018). 60 let konceptu lesní vegetační stupňovitosti v Českých zemích. In Hrubá, V., Friedl, M. (Eds.), Geobiocenologie a lesnická typologie a jejich aplikace v lesnictví a krajinářství (pp. 81-96). Ústav lesnické botaniky, dendrologie a geobiocenologie, Lesnická a dřevařská fakulta Mendelovy univerzity v Brně, Brno. (In Czech).
  51. Kusbach, A., Štěrba, T., Šebesta, J., Mikita, T., Bazarradnaa, E., Dambadarjaa, S., Smola, M., (2019). Ecological Zonation As A Tool For Restoration Of Degraded Forests In Northern Mongolia. Geography, Environment, Sustainability, 12(3), 98–116. https://doi.org/10.24057/2071-9388-2019-31.
  52. Lal, R., (1988). Effects of slope length, slope gradient, tillage methods and cropping systems on runoff and soil erosion on a tropical Alfisol: preliminary results: Proceedings of the Porto Alegre Symposium. Sediment Budget, 174, 79–88.
  53. Landis, J. R., Koch, G. G., (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174. https://doi.org/10.2307/2529310.
  54. Liaw A, Wiener M., (2002). Classification and Regression by randomForest.” R News, 2(3), 18-22. https://CRAN.R-project.org/doc/Rnews/.
  55. Lundbäck, M., Persson, H., Häggström, C., Nordfjell, T., (2021). Global analysis of the slope of forest land. Forestry: An International Journal of Forest Research, 94(1), 54–69. https://doi.org/10.1093/forestry/cpaa021.
  56. Major, J., (1951). A Funcional, Factorial Approach to Plant Ecology. Ecology, 32(3), 392–412.
  57. Meidinger, D., Pojar, J. (Eds.), (1991). Ecosystems of British Columbia (Sixth Edition). Ministry of Forests. Special Report Series, Victoria, BC. 342 p.
  58. Meloun, M., Militký, J., (2012). Statistická analýza vícerozměrných dat v příkladech (Second Edition). Academia. Praha. 736 p. (In Czech).
  59. Mercier, D. (Ed.), (2021). Spatial Impacts of Climate Change. ISTE-Wiley, London. 332 p.
  60. Moores, E. M., Fairbridge, R. W. (Eds.), (1997). Encyclopedia of European and Asian regional geology. Chapman and Hall. London, UK. 804 p.
  61. Mucina, L., (2019). Biome: evolution of a crucial ecological and biogeographical concept. New Phytologist, 222, 97–114. https://doi.org/10.1111/nph.15609.
  62. Němeček, J., Mühlhanselová, M., Macků, J., Vokoun, J., Vavříček, D., Novák, P., (2011). Taxonomický klasifikační systém půd České republiky (Second Edition). Česká zemědělská univerzita. Praha. 94 p. (In Czech).
  63. Novotný, I., Vopravil, J., Kohoutová, L., Poruba, M., Papaj, V., Khel, T., Žigmund, I., Vašků, Z., Novák, P., Tomiška, Z., Koutná, R., Pacola, M., Novotný, J., Pírková, I., Havelková, L., Brouček, J., and Žížala, D., (2013). Metodika mapování a aktualizace bonitovaných půdně ekologických jednotek: bonitace zemědělského půdního fondu (Fourth Edition). Výzkumný ústav meliorací a ochrany půdy. Praha. 172 p. (In Czech).
  64. Oksanen, F.J., et al., (2022). Vegan: Community Ecology Package. R package Version 2.4-3. https://CRAN.R-project.org/package=vegan.
  65. Panagos, P., Borrelli, P., Meusburger, K., (2015). A New European Slope Length and Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water. Geosciences, 5, 117–126. https://doi.org/10.3390/geosciences5020117.
  66. Pánek, T., Kapustová, V., (2016). Long-Term Geomorphological History of the Czech Republic. In Pánek, T., Hradecký, J. (Eds.), Landscapes and Landforms of the Czech Republic (pp. 29–39), Springer International.
  67. Pearson, R.G., Dawson, T.P., (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361-371. https://doi.org/10.1046/j.1466-822X.2003.00042.x.
  68. Peldar, J. H., D. W. McKenney, I. Aubin, T. Beardmore, J. Beaulieu, L. Iverson, G. A. O’Neill, R. S. Winder, C. Ste-Marie., (2012). Placing Forestry in the Assisted Migration Debate. BioScience 62 (9): 835–842. https://doi.org/10.1525/bio.2012.62.9.10.
  69. Pfister, R. D., Arno, S. F., (1980). Classifying Forest Habitat Types Based on Potential Climax Vegetation. Forest Science, 26(1), 52–72.
  70. Pitko, J., Plíva, K., (1967). Hospodárske súbory lesných typov a ich využitie. Lesnický časopis, 13(10), 905–924. (In Czech).
  71. Plašienka, D., Grecula, P., Putiš, M., Kováč, M., Hovorka, D., (1997). Evolution and structure of the Western Carpathians: an overview. Geological evolution of the Western Carpathians, 1–24.
  72. Plíva, K., Žlábek, I., (1986). Přírodní lesní oblasti ČSR. Státní zemědělské nakladatelství. Praha. 316 p. (In Czech).
  73. Pogrebnyak, P. S., (1955). Fundamentals of Forest Typology. Publishing House of the Academy of Sciences of the Ukrainian SSR. Kiev. 456 p.
  74. Pojar, J., Klinka, K., Meidinger, D. V., (1987). Biogeoclimatic Ecosystem Classification in British Columbia. Forest Ecology and Management, 22, 119–154. https://doi.org/10.1016/0378-1127(87)90100-9.
  75. QGIS (2022). Ein freies Open-Source-Geographisches-Informationssystem. https://qgis.org/de/site/.
  76. Qiu, H., Cui, P., Regmi, A. D., Wang, Y., Hu, S., (2017). Slope height and slope gradient controls on the loess slide size within different slip surfaces. Physical Geography, 38(4), 303–317. https://doi.org/10.1080/02723646.2017.1284581.
  77. R Core Team., (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/.
  78. Riley, S. J., DeGloria, S. D., Elliot, R., (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5(1–4), 23–27. https://doi.org/10.1177/0738894216659843.
  79. RStudio Team, (2020). RStudio: Integrated Development for R. RStudio. http://www.rstudio.com/.
  80. Rusnák, M., Sládek, J., and Kidová, A., (2018). Využite UAV technológie pre klasifikáciu a mapovanie krajiny vo fluviálnej geomorgológii. Geographical Journal, 70(2), 141–160. https://doi.org/10.31577/geogrcas.2018.70.2.08.
  81. Selleck, G. W., (1960). The Climax Concept. Botanical Review, 26(4), 534–545.
  82. Shiferaw, H. M., (2021). Study on the influence of slope height and angle on the factor of safety and shape of failure of slopes based on strength reduction method of analysis. Beni-Suef University Journal of Basic and Applied Sciences, 1–11. https://doi.org/10.1186/s43088-021-00115-w.
  83. Statsoft.com. (2016). STATISTICA 12. http://www.statsoft.com/Products/STATISTICA-Features/Version-12.
  84. Steel, R. G., (1960). A rank sum test for comparing all pairs of treatments. Technometrics, 2(2), 197–207. https://doi.org/10.1080/00401706.1960.10489894.
  85. Sukachev, V. N., (1944). On the principles of genetic classification in biocoenology. Zhur. Obschei. Biol. 5: 213–227 [English translation of full paper by F. Raney, Edited and condensed by R. Daubenmire (1958).] Ecology, 39: 364–367. (In Russian).
  86. Šimek, M., Borůvka, L., Baldrian, P., Bryndová, M., Devetter, M., Drábek, O., Elhottová, D., Háněl, L., Houška, J., Hynšt, J., Chroňáková, A., Jílková, V., Konvalina, P., Kopecký, J., Koubová, A., Kováč, Ľ., Kyselková, M., Lukešová, A., Macková, J., et al., (2019). Živá půda: biologie, ekologie, využívání a degradace půdy. Academia. Praha. 789 p. (In Czech).
  87. Therneau, T., Atkinson, B., Ripley, B., (2013). Rpart: Recursive Partitioning. R Package Version 4.1-3. http://CRAN.R-project.org/package=rpart.
  88. Trevisani, S., Cavalli, M., Marchi, L., (2012). Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin. Geomorphology, 161–162, 26–39. https://doi.org/10.1016/j.geomorph.2012.03.031.
  89. Trnka, M., Hlavinka, P., Možný, M., Semerádová, D., Štěpánek, P., Balek, J., Bartošová, L., Zahradníček, P., Bláhová, M., Skalák, P., Farda, A., Hayes, M., Svoboda, M., Wagner, W., Eitzinger, J., Fischer, M., Žalud, Z., (2020). Czech Drought Monitor System for monitoring and forecasting agricultural drought and drought impacts. International Journal of Climatology, 40(14), 5941-5958. https://doi.org/10.1002/joc.6557.
  90. Tukey, J. W., (1949). Comparing Indivitual Means in the Analysis of Varience. Biometrics, 5(2), 99–114. https://doi.org/10.2307/3001913.
  91. van Dijk, A. I. J. M., Hairsine, P. B., Arancibia, J. P., Dowling, T. I., (2007). Reforestation, water availability and stream salinity: A multi-scale analysis in the Murray-Darling Basin, Australia. Forest Ecology and Management, 251(1–2), 94–109. https://doi.org/10.1016/j.foreco.2007.06.012.
  92. Vavříček, D., Kučera, A., (2017). Základy lesnického půdoznalství a výživy lesních dřevin. Lesnická práce. Kostelec nad Černými lesy. 362 p. (In Czech).
  93. Vavříček, D., Ulrich, R., Kučera, A., (2014). Ochrana půdy v těžebně-dopravní činnosti. Mendelova univerzita v Brně. Brno. 99 p. (In Czech).
  94. Viewegh, J., A. Kusbach, Mikeska, M., (2003). Czech forest ecosystem classification. Journal of Forest Science 49 (2): 85-93. https://doi.org/10.17221/4682-JFS.
  95. Volařík, D. (2010). Application of digital elevation model for mapping vegetation tiers. Journal of Forest Science 56 (3): 112-120. https://doi.org/10.17221/74/2009-JFS.
  96. Walter, H., Breckle, S.-W., (2009). Vegetation und Klimazonen: Grundriß der globalen Ökologie (Seventh Edition). Verlag Eugen Ulmer. Ulmer. 544 p.
  97. White, R. E., (1997). Principles and Practice of Soil Science. The Soil as a Natural Resource, (Third Edition). Blackwell Science, Oxford, UK. 152 p.
  98. Whittaker, R. H., (1953). A Consideration of Climax Theory: The Climax as a Population and Pattern. Ecological Monographs, 23(1), 41–78. https://doi.org/10.2307/1943519.
  99. Williams, M. I., Dumroese, R. K., (2013). Preparing for climate change: Forestry and assisted migration. Journal of Forestry, 111(4), 287–297. https://doi.org/10.5849/jof.13-016.
  100. Yokoyama, R., Shirasawa, M., Pike, R. J., (2002). Visualizing Topography by Openness: A New Application of Image Processing to Digital Elevation Models. Photogrammetric Engineering and Remote Sensing, 66(3), 257–265.
  101. Zhang, D., Zhou, G., (2016). Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors, 16, 1–29. https://doi.org/10.3390/s16081308.
  102. Zlatník, A. (1975). Ekologie krajiny a geobiocenologie. Vysoká škola zemědělská v Brně. Brno. 172 p. (In Czech).
  103. Zlatník, A. (1976). Přehled skupin typů geobiocénů původně lesních a křovinných. Zprávy Geografického ústavu ČSAV, 13(3-4), 55–64. (In Czech).
DOI: https://doi.org/10.2478/jlecol-2023-0009 | Journal eISSN: 1805-4196 | Journal ISSN: 1803-2427
Language: English
Page range: 24 - 49
Submitted on: May 21, 2023
Accepted on: Jul 25, 2023
Published on: Oct 6, 2023
Published by: Czech Society for Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Petr Dujka, Antonín Kusbach, published by Czech Society for Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.