Have a personal or library account? Click to login

Mapping and yield prediction of castor bean (Ricinus communis) using Sentinel-2A satellite image in a semi-arid region of india

Open Access
|Oct 2023

References

  1. Agri Farming, (2023). Castor cultivation information guide. Retrieved June 4, 2023, from https://www.agrifarming.in/castor-cultivation-information-guide.
  2. Atkinson, P.M., Tatnall, A.R.L. (1997). Introduction neural networks in remote sensing. Int. J. Remote Sens. 18(4):699-709. https://doi.org/10.1080/014311697218700
  3. Bégué, A., Arvor, D., Bellon, B., Betbeder, J., Abelleyra, D., Ferraz, R. P. D., Lebourgeois, V., et al., (2018). Remote Sensing and Cropping Practices: A Review. Remote Sens., 10, 99. https://doi.org/10.3390/rs10010099
  4. Belward, A.S., Skøien, J.O., (2015). Who launched what, when and why; trends in global land-cover observation capacity from civilian Earth observation satellites. ISPRS J. Photogramm. Remote Sens., 103, 115-128. https://doi.org/10.1016/j.isprsjprs.2014.03.009
  5. Bolton, D.K., Friedl, M.A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 173, 74-84. https://doi.org/10.1016/j.agrformet.2013.01.007
  6. Cavalaris, C., Latterini, F., Stefanoni W., Karamoutis, C., Luigi Pari, L., Alexopoulou, E., (2022) Monitoring Chemical-Induced Ripening of Castor (Ricinus communis L.) by UAS-Based Remote Sensing. Agriculture, 12, 159. https://doi.org/10.3390/agriculture12020159
  7. Chu, C., Hsu, A.L., Chou, K.H., Bandettini, P., Lin, C., ADNI Initiative (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60(1):59-70. https://doi.org/10.1016/j.neuroimage.2011.11.066
  8. Cortes, C., Vapnik, V.N. (1995). Support-vector networks. Mach. Learn. 20:273-297. https://doi.org/10.1007/BF00994018
  9. Esquerdo, J., Zullo, J., Antunes, J.F.G. (2011). Use of NDVI/AVHRR time-series profiles for soybean crop monitoring in Brazil. Int. J. Remote Sens. 32: 3711-3727. https://doi.org/10.1080/01431161003764112
  10. Ghazaryan, G., Dubovyk, O., Löw, F., Lavreniuk, M., Kolotii, A., Schellberg, J., Kussul, N., (2018). A rule-based approach for crop identification using multi-temporal and multi-sensor phenological metrics. Eur. J. Remote Sens., 51:1, 511-524. https://doi.org/10.1080/22797254.2018.1455540.
  11. Huang. J., Wang, X., Li, X., Tian, H., Pan, Z. (2013). Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA’s-AVHRR. PLoS ONE 8(8): e70816. https://doi.org/10.1371/journal.pone.0070816.
  12. Huete, A. R., Didan, K., Miura, T., Rodriguez, E., Gao, X., Ferreira, L. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
  13. Huete, A., Justice, C., Van Leeuwen, W. (1999). MODIS vegetation index (MOD13), Algorithm theoretical basis document, 3, 213.
  14. Jaafar, H. H., Ahmed, F. A. (2015). Crop yield prediction from remotely sensed vegetation indices and primary productivity in arid and semi-arid lands. Int. J. Remote Sens., 36(18), 4570-4589. https://doi.org/10.1080/01431161.2015.1084434.
  15. Jiang, Z., Huete, A.R, Didan, K., Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 112(10), 3833-3845. https://doi.org/10.1016/j.rse.2008.06.006.
  16. Kumar, P, Gupta, D. K., Mishra, V.N., Prasad, R. (2015). Comparison of support vector machine, artificial neural network and spectral angle mapper algorithms for crop classification using LISS IV data. Int. J. Remote Sens. 36(6):1604-1617. https://doi.org/10.1080/2150704X.2015.1019015.
  17. Kumar, P., Prasad, R., Choudhary, A., Mishra, V. N., Gupta, D.K. and Srivastava, P.K. (2017). A statistical significance of differences in classification accuracy of crop types using different classification algorithms. Geocarto Int., 32(2), 206-224. https://doi.org/10.1080/10106049.2015.1132483.
  18. Lillesand, T.M., Kiefer, R.W., Chipman, J.W. (2008). Remote sensing and image interpretation, 6th Edn. Wiley, New York.
  19. Liu, J., Shang, J., Qian, B., Huffman, T., Zhang, Y., Dong, T. Jing, Q., Martin, T. (2019). Crop Yield Estimation Using Time-Series MODIS Data and the Effects of Cropland Masks in Ontario, Canada. Remote Sens. 11(20), 2419. https://doi.org/10.3390/rs11202419.
  20. Lu, D., Mausel, P., Batistella, M., Moran, E. (2004). Comparison of landcover classification methods in the Brazilian Amazon basin. Photogramm Eng Remote Sens 70(6):723-731. https://doi.org/10.14358/PERS.70.6.723.
  21. Lu, D., Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens., 28(5):823-870. https://doi.org/10.1080/01431160600746456.
  22. Martins, V. S., Barbosa, C. C. F., De Carvalho, L. A. S., Jorge, D. S. F., Lobo, F. D. L., and Novo, E. M. L. de Mores. (2017). Assessment of atmospheric correction methods for Sentinel-2A MSI images applied to Amazon floodplain lakes. Remote Sens., 9 (4), 322. https://doi.org/10.3390/rs9040322.
  23. Mas J.F., Flores, J.J. (2008). The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 29:617-663. https://doi.org/10.1080/01431160701352154.
  24. Mishra, V.N., Prasad, R., Kumar, P., Gupta, D.K., Srivastava, P.K (2017b). Dual polarimetric C-band SAR data for land use/land cover classification by incorporating textural information. Environ. Earth Sci. 76(1):26. https://doi.org/10.1007/s12665-016-6341-7.
  25. Mishra, V.N., Prasad, R., Kumar, P., Srivastava, P.K., Rai, P. K., (2017a). Knowledge-based decision tree approach for mapping spatial distribution of rice crop using C-band synthetic aperture radar-derived information. J. Appl. Remote Sens. 11(4), 046003. https://doi.org/10.1117/1.JRS.11.046003.
  26. Mkhabela, M.S., Bullock, P., Raj, S., Wang, S., Yang, Y. (2011). Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. For. Meteorol. 151, 385-393. https://doi.org/10.1016/j.agrformet.2010.11.012.
  27. Pal, M., Foody, G. M. (2010). Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 48, 2297-2307. https://doi.org/10.1109/TGRS.2009.2039484.
  28. Pareulo, J. M., Jobbagy, E. G., Sala, O. E., Lauenroth, W. K. and Burke, I. C. (1998). Functional and Structural convergence of temperate grassland and shrubland ecosystems. Ecol Appl, 8 (1), 194-206. https://doi.org/10.1890/1051-0761(1998)008[0194:FASCOT]2.0.CO;2.
  29. Pijanowski, B.C., Brown, D.G., Shellito, B.A., Manik, G.A. (2002). Using neural networks and GIS to forecast land use changes: a land transformation model. Comput Environ Urban Syst 26:553-575. https://doi.org/10.1016/S0198-9715(01)00015-1.
  30. Polsot, A.-S., Speedy, A., Kueneman, E., (2004). Good Agricultural Practices-A Working Concept; Background Paper for the FAO Internal Workshop on Good Agricultural Practices; FAO: Rome, Italy, p. 41.
  31. Puissant, A., Rougiera, S., Andre´, S. (2014). Object-oriented mapping of urban trees using random forest classifiers. Int J Appl Earth Obs Geoinf 26:235–245. http://dx.doi.org/10.1016/j.jag.2013.07.002.
  32. Richards, J.A, Jia, X. (2006). Remote sensing digital image analysis, 4th edn. Springer, Heidelberg.
  33. Richards, J.A. (1993). Remote Sensing Digital Image Analysis, Springer.
  34. Roujean, J. L., Breon, F.M. (1995). Estimating par absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ., 51, 375-384. https://doi.org/10.1016/0034-4257(94)00114-3.
  35. Shammi, S. A., Meng, Q. (2021). Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Ecol Indic, 121, 107124, https://doi.org/10.1016/j.ecolind.2020.107124.
  36. Shiu, Y.-S., Chuang, Y.-C. (2019). Yield Estimation of paddy rice based on satellite imagery: comparison of global and local regression models. Remote Sens. 11, 111. https://doi.org/10.3390/rs11020111.
  37. Skakun, S., Franch, B., Vermote, E., Roger, J-C., Becker-Reshef, I., Justice, C., Kussul, N., (2017). Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sens. Environ., 195, 244-258. https://doi.org/10.1016/j.rse.2017.04.026.
  38. Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Bray, M., Islam, T. (2012). Selection of classification techniques for land use/land cover change investigation. Adv. Space Res. 50:1250-1265. https://doi.org/10.1016/j.asr.2012.06.032.
  39. Sun, H., Xu, A., Lin, H., Zhang, L., Mei, Y. (2012). Winter wheat mapping using temporal signatures of MODIS vegetation index data. Int. J. Remote Sens., 33(16), 5026-5042. https://doi.org/10.1080/01431161.2012.657366.
  40. Vapnik, V.N. (1998). Statistical learning theory. Wiley, New York.
  41. Weier, J. and Herring, D. (2000). Measuring Vegetation (NDVI & EVI). NASA Earth Observatory, Washington DC.
DOI: https://doi.org/10.2478/jlecol-2023-0008 | Journal eISSN: 1805-4196 | Journal ISSN: 1803-2427
Language: English
Page range: 1 - 23
Submitted on: May 3, 2023
Accepted on: Jun 12, 2023
Published on: Oct 6, 2023
Published by: Czech Society for Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Ritesh Kumar, Narendra Singh Bishnoi, Nimish Narayan Gautam, Muskan,, Varun Narayan Mishra, published by Czech Society for Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.