Have a personal or library account? Click to login
Assessment of Urban Expansion and Identification of Sprawl Through Delineation of Urban Core Boundary Cover

Assessment of Urban Expansion and Identification of Sprawl Through Delineation of Urban Core Boundary

Open Access
|Dec 2022

References

  1. Alsharif, A. A. A., Pradhan, B., Mansor, S., & Shafri, H. Z. M. (2015). Urban expansion assessment by using remotely sensed data and the relative Shannon entropy model in GIS: A case study of Tripoli, Libya. Theoretical and Empirical Researches in Urban Management, 10(1), 55–71.
  2. Angel, S., Sheppard, S. C., & Civco, D. L. (2005). The Dynamics of Global Urban Expansion. The World Bank, September, 205. http://www.citiesalliance.org/sites/citiesalliance.org/files/CA_Docs/resources/upgrading/urban-expansion/worldbankreportsept2005.pdf
  3. Anguluri, R., & Narayanan, P. (2017). Role of green space in urban planning: Outlook towards smart cities. Urban Forestry and Urban Greening, 25, 58–65. https://doi.org/10.1016/j.ufug.2017.04.007
  4. Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21(1), 265–275. https://doi.org/10.1016/j.jag.2011.12.014
  5. Barnes, K., Morgan, J., Roberge, M., & Lowe, S. (2001). Sprawl Development: Its Patterns, Consequences, and Measurement. Annals of Physics, 54, 24. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0
  6. Bharath, H. A., Chandan, M. C., Vinay, S., & Ramachandra, T. V. (2018). Modelling urban dynamics in rapidly urbanizing Indian cities. Egyptian Journal of Remote Sensing and Space Science, 21(3), 201–210. https://doi.org/10.1016/j.ejrs.2017.08.002
  7. Bhatta, B. (2009). Modelling of urban growth boundary using geoinformatics. International Journal of Digital Earth, 2(4), 359–381. https://doi.org/10.1080/17538940902971383
  8. Bhatta, B., Saraswati, S., & Bandyopadhyay, D. (2010). Urban sprawl measurement from remote sensing data. Applied Geography, 30(4), 731–740. https://doi.org/10.1016/j.apgeog.2010.02.002
  9. Bourne, L. S. (2001). Myths, Realities and Hidden Agendas. Plan Canada, 41(4), 26–28.
  10. Brueckner, J. K. (2000). Urban sprawl: Diagnosis and remedies. International Regional Science Review, 23(2), 160–171. https://doi.org/10.1177/016001700761012710
  11. Brueckner, J. K., & Fansler, D. A. (2006). The Economics of Urban Sprawl: Theory and Evidence on the Spatial Sizes of Cities. The Review of Economics and Statistics, 65(3), 479. https://doi.org/10.2307/1924193
  12. Christiansen, P., & Loftsgarden, T. (2011). Drivers behind Urban Sprawl in Europe (Issue May). https://www.toi.no/getfile.php/Publikasjoner/TØIrapporter/2011/1136-2011/1136- 2011-el.pdf
  13. Dahal, K. R., Benner, S., & Lindquist, E. (2018). Analyzing Spatiotemporal Patterns of Urbanization in Treasure Valley, Idaho, USA. Applied Spatial Analysis and Policy, 11(2), 205–226. https://doi.org/10.1007/s12061-016-9215-1
  14. Dixon, B., & Candade, N. (2008). Multispectral landuse classification using neural networks and support vector machines: One or the other, or both? International Journal of Remote Sensing, 29(4), 1185–1206. https://doi.org/10.1080/01431160701294661
  15. Ewing, R., Pendall, R., & Chen, D. (2007). Measuring Sprawl and Its Transportation Impacts. Transportation Research Record: Journal of the Transportation Research Board, 1831(1), 175–183. https://doi.org/10.3141/1831-20
  16. Gavrilidis, A. A., Niță, M. R., Onose, D. A., Badiu, D. L., & Năstase, I. I. (2019). Methodological framework for urban sprawl control through sustainable planning of urban green infrastructure. Ecological Indicators, 96(October), 67–78. https://doi.org/10.1016/j.ecolind.2017.10.054
  17. Gowri, V. S., Ramachandran, S., Ramesh, R., Pramiladevi, I. R. R., & Krishnaveni, K. (2008). Application of GIS in the study of mass transport of pollutants by Adyar and Cooum Rivers in Chennai, Tamilnadu. Environmental Monitoring and Assessment, 138(1–3), 41–49. https://doi.org/10.1007/s10661-007-9789-917562203
  18. Grand, J., DeLuca, W. V., McGarigal, K., Compton, B. W., Plunkett, E. B., & Willey, L. L. (2018). Modeling non-stationary urban growth: The SPRAWL model and the ecological impacts of development. Landscape and Urban Planning, 177(October 2017), 178–190. https://doi.org/10.1016/j.landurbplan.2018.04.018
  19. Grigorescu, I., Kucsicsa, G., Popovici, E. A., Mitrică, B., Mocanu, I., & Dumitraşcu, M. (2021). Modelling land use/cover change to assess future urban sprawl in Romania. Geocarto International, 36(7), 721–739. https://doi.org/10.1080/10106049.2019.1624981
  20. Habibi, S., & Asadi, N. (2011). Causes, results and methods of controlling urban sprawl. Procedia Engineering, 21, 133–141. https://doi.org/10.1016/j.proeng.2011.11.1996
  21. Hayden, D. (2004). A field guide to sprawl. WW Norton & Company.
  22. He, Q., Zeng, C., Xie, P., Tan, S., & Wu, J. (2019). Comparison of urban growth patterns and changes between three urban agglomerations in China and three metropolises in the USA from 1995 to 2015. Sustainable Cities and Society, 50(April), 101649. https://doi.org/10.1016/j.scs.2019.101649
  23. Hong, G., Zhang, A., Zhou, F., & Brisco, B. (2014). Integration of optical and synthetic aperture radar (SAR) images to differentiate grassland and alfalfa in Prairie area. International Journal of Applied Earth Observation and Geoinformation, 28(1), 12–19. https://doi.org/10.1016/j.jag.2013.10.003
  24. Jain, S., Kohli, D., & Rao, R. M. (2011). Spatial Metrics to Analyze the Impact of Regional Factors on Pattern of Urbanization in Gurgaon, India. 39(June), 203–212. https://doi.org/10.1007/s12524-011-0088-0
  25. Jat, M. K., Garg, P. K., & Khare, D. (2008). Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, 10(1), 26–43. https://doi.org/10.1016/j.jag.2007.04.002
  26. Jayaprakash, M., Senthil Kumar, R., Giridharan, L., Sujitha, S. B., Sarkar, S. K., & Jonathan, M. P. (2015). Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: A metropolitan city effect. Ecotoxicology and Environmental Safety, 120, 243–255. https://doi.org/10.1016/j.ecoenv.2015.05.04226092556
  27. Kantakumar, L. N., Kumar, S., & Schneider, K. (2015). Spatiotemporal urban expansion in
  28. Pune metropolis, India using remote sensing. Habitat International, 51, 11–22. https://doi.org/10.1016/j.habitatint.2015.10.007
  29. Kantakumar, L. N., Kumar, S., & Schneider, K. (2016). Spatiotemporal urban expansion in Pune metropolis, India using remote sensing. Habitat International, 51, 11–22. https://doi.org/10.1016/j.habitatint.2015.10.007
  30. Ke, X., Qi, L., & Zeng, C. (2016). A partitioned and asynchronous cellular automata model for urban growth simulation. International Journal of Geographical Information Science, 30(4), 637–659. https://doi.org/10.1080/13658816.2015.1084510
  31. Lal, K., Kumar, D., & Kumar, A. (2017). Spatio-temporal landscape modeling of urban growth patterns in Dhanbad Urban Agglomeration, India using geoinformatics techniques. Egyptian Journal of Remote Sensing and Space Science, 20(1), 91–102. https://doi.org/10.1016/j.ejrs.2017.01.003
  32. Liu, X., Li, X., Chen, Y., Tan, Z., Li, S., & Ai, B. (2010). A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landscape Ecology, 25(5), 671–682. https://doi.org/10.1007/s10980-010-9454-5
  33. Long, Y., Han, H., Lai, S. K., & Mao, Q. (2013). Urban growth boundaries of the Beijing Metropolitan Area: Comparison of simulation and artwork. Cities, 31, 337–348. https://doi.org/10.1016/j.cities.2012.10.013
  34. Mahtta, R., Fragkias, M., Güneralp, B., Mahendra, A., Reba, M., Wentz, E. A., & Seto, K. C. (2022). Urban land expansion: the role of population and economic growth for 300+ cities. In npj Urban Sustainability (Vol. 2, Issue 1). https://doi.org/10.1038/s42949-022-00048-y
  35. Maithani, S. (2010). Cellular Automata Based Model of Urban Spatial Growth. Journal of the Indian Society of Remote Sensing, 38(4), 604–610. https://doi.org/10.1007/s12524-010-0053-3
  36. Martellozzo, F., & Clarke, K. C. (2011). Measuring urban sprawl, coalescence, and dispersal: A case study of Pordenone, Italy. Environment and Planning B: Planning and Design, 38(6), 1085–1104. https://doi.org/10.1068/b36090
  37. Mohammadi, J., Zarabi, A., & Mobaraki, O. (2012). Urban Sprawl Pattern and Effective Factors on Them : the Case of Urmia City, Iran. Geography, IV, 77–89.
  38. Mondal, B., Das, D. N., & Dolui, G. (2015). Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach. Modeling Earth Systems and Environment, 1(4), 1–13. https://doi.org/10.1007/s40808-015-0026-1
  39. Naikoo, M. W., Rihan, M., Ishtiaque, M., & Shahfahad. (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. Journal of Urban Management, 9(3), 347–359. https://doi.org/10.1016/j.jum.2020.05.004
  40. Ozturk, D. (2015). Urban growth simulation of Atakum (Samsun, Turkey) using cellular automata-Markov chain and Multi-layer Perceptron-Markov chain models. Remote Sensing, 7(5), 5918–5950. https://doi.org/10.3390/rs70505918
  41. Padmanaban, R., Bhowmik, A. K., Cabral, P., Zamyatin, A., Almegdadi, O., & Wang, S. (2017). Modelling urban sprawl using remotely sensed data: A case study of Chennai city, Tamilnadu. Entropy, 19(4). https://doi.org/10.3390/e19040163
  42. Pandey, P. C., Koutsias, N., Petropoulos, G. P., Srivastava, P. K., & Ben Dor, E. (2021). Land use/land cover in view of earth observation: data sources, input dimensions, and classifiers—a review of the state of the art. Geocarto International, 36(9), 957–988. https://doi.org/10.1080/10106049.2019.1629647
  43. Parvinnezhad, D., Delavar, M. R., Claramunt, C., & Pijanowski, B. C. (2021). A modified spatial entropy for urban sprawl assessment. Geocarto International, 36(16), 1804–1819. https://doi.org/10.1080/10106049.2019.1678676
  44. Pijanowski, B.., Tayyebi, A., Delavar, M. R., & Yazdanpanah, M. J. (2009). Urban expansion simulation using geospatial information system and artificial neural networks. International Journal of Environmental Research, 3(4), 495–502.
  45. Ramachandra, T. V., Aithal, B. H., & Sowmyashree, M. V. (2014). Urban structure in Kolkata: metrics and modelling through geo-informatics. Applied Geomatics, 6(4), 229–244. https://doi.org/10.1007/s12518-014-0135-y
  46. Ramachandra, T. V., Bharath, A. H., & Sowmyashree, M. V. (2015). Monitoring urbanization and its implications in a mega city from space: Spatiotemporal patterns and its indicators. Journal of Environmental Management, 148, 67–81. https://doi.org/10.1016/j.jenvman.2014.02.01524768450
  47. Ramachandra, T. V, Bharath, H. A., & Sowmyashree, M. V. (2014). Urban footprint of Mumbai - the commercial capital of India. Journal of Urban and Regional Analysis, 6(1), 71–94. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904006635&partnerID=40&md5=55006c6860115bd88f73dbda359dfb78
  48. Raman, N., & Sathiya Narayanan, D. (2008). Impact of solid waste effect on ground water and soil quality nearer to pallavaram solid waste landfill site in Chennai. Rasayan Journal of Chemistry, 1(4), 828–836.
  49. Rastogi, K., & Jain, G. V. (2018). Urban Sprawl Analysis Using Shannon’S Entropy and Fractal Analysis: a Case Study on Tiruchirappalli City, India. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–5(November), 761–766. https://doi.org/10.5194/isprs-archives-xlii-5-761-2018
  50. Sahana, M., Hong, H., & Sajjad, H. (2018). Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Science of the Total Environment, 628–629, 1557–1566. https://doi.org/10.1016/j.scitotenv.2018.02.17030045573
  51. Schneider, A., & Woodcock, C. E. (2008). Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Studies, 45(3), 659–692. https://doi.org/10.1177/0042098007087340
  52. Shafizadeh Moghadam, H., & Helbich, M. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 40, 140–149. https://doi.org/10.1016/j.apgeog.2013.01.009
  53. Sridhar, M. B., & Sathyanathan, R. (2022). Spatiotemporal Patterns of Urbanization in Chennai City, Tamil Nadu, India Using Remote Sensing Data. Lecture Notes in Civil Engineering, 191, 23–34. https://doi.org/10.1007/978-981-16-5839-6_3
  54. Stefanski, J., Kuemmerle, T., Chaskovskyy, O., Griffiths, P., Havryluk, V., Knorn, J., Korol, N., Sieber, A., & Waske, B. (2014). Mapping land management regimes in western Ukraine using optical and SAR data. Remote Sensing, 6(6), 5279–5305. https://doi.org/10.3390/rs6065279
  55. Sudhira, H. S., Ramachandra, T. V., & Jagadish, K. S. (2004). Urban sprawl: Metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformation, 5(1), 29–39. https://doi.org/10.1016/j.jag.2003.08.002
  56. Tang, J., Wang, L., & Yao, Z. (2006). Analyzing urban sprawl spatial fragmentation using multi-temporal satellite images. GIScience and Remote Sensing, 43(3), 218–232. https://doi.org/10.2747/1548-1603.43.3.218
  57. Taubenböck, H., Wegmann, M., Roth, A., Mehl, H., & Dech, S. (2009). Urbanization in India - Spatiotemporal analysis using remote sensing data. Computers, Environment and Urban Systems, 33(3), 179–188. https://doi.org/10.1016/j.compenvurbsys.2008.09.003
  58. Tayyebi, A., Pijanowski, B. C., & Tayyebi, A. H. (2011). An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran. Landscape and Urban Planning, 100(1–2), 35–44. https://doi.org/10.1016/j.landurbplan.2010.10.007
  59. Triantakonstantis, D., & Stathakis, D. (2015). Examining urban sprawl in Europe using spatial metrics. Geocarto International, 30(10), 1092–1112. https://doi.org/10.1080/10106049.2015.1027289
  60. Weng, Q. (2001). A remote sensing?GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 22(10), 1999–2014. https://doi.org/10.1080/713860788
  61. Xu, C., Liu, M., Zhang, C., An, S., Yu, W., & Chen, J. M. (2007). The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China. Landscape Ecology, 22(6), 925–937. https://doi.org/10.1007/s10980-007-9079-5
  62. Yeh, A. G. O., & Li, X. (2001). Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogrammetric Engineering and Remote Sensing, 67(1), 83–90.
  63. Yue, W., Liu, Y., & Fan, P. (2013). Measuring urban sprawl and its drivers in large Chinese cities: The case of Hangzhou. Land Use Policy, 31, 358–370. https://doi.org/10.1016/j.landusepol.2012.07.018
  64. Zhao, C., Li, Y., & Weng, M. (2021). A fractal approach to urban boundary delineation based on raster land use maps: A case of shanghai, china. Land, 10(9). https://doi.org/10.3390/land10090941
DOI: https://doi.org/10.2478/jlecol-2022-0020 | Journal eISSN: 1805-4196 | Journal ISSN: 1803-2427
Language: English
Page range: 102 - 120
Submitted on: Jun 19, 2022
Accepted on: Oct 25, 2022
Published on: Dec 8, 2022
Published by: Czech Society for Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 M. B. Sridhar, R. Sathyanathan, published by Czech Society for Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.