References
- Alexei, L., John, M., Yujie, W., Istvan, L., Sergey, K., (2011a). Multiangle implementation of atmospheric correction (MAIAC):1. Radiative transfer basis and look-up tables. J. Geophys. Res. 116. https://doi.org/10.1029/2010JD014985
- Alexei, L., Kahn, R., Yujie, W., Istvan, L., Sergey, K., L., R., R., L., S., R.J., (2011b). Multiangle implementation of atmospheric correction (MAIAC):2. Aerosol algorithm. J. Geophys. Res. 116. https://doi.org/10.1029/2010JD014986
- Altaratz, O., Bar-Or, R.Z., Wollner, U., Koren, I., (2013). Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds. Environ. Res. Lett. 8. https://doi.org/10.1088/1748-9326/8/3/034025
- Banerjee, T., Kumar, M., Mall, R.K., Singh, R.S., (2017). Airing ‘clean air’ in Clean India Mission. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-016-8264-y28039622
- Banerjee, T., Kumar, M., Singh, N., (2018). Aerosol, climate, and sustainability, Encyclopedia of the Anthropocene. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809665-9.09914-6
- Banerjee, T., Murari, V., Kumar, M., Raju, M.P., (2015). Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmos. Res. 164–165, 167–187. https://doi.org/10.1016/j.atmosres.2015.04.017
- Bilal, M., Nichol, J.E., (2015). Evaluation of MODIS aerosol retrieval algorithms over the Beijing-Tianjin-Hebei region during low to very high pollution events. Geophys. Res. Atmos. 120, 7941–7957. https://doi.org/10.1002/2015JD023082
- Bilal, M., Qiu, Z., Campbell, J.R., Spak, S.N., Shen, X., Nazeer, M., (2018). A new MODIS C6 dark target and Deep Blue merged aerosol product on a 3 km spatial grid. Remote Sens. 10, 1–13. https://doi.org/10.3390/rs10030463
- Burney, J., Ramanathan, V., (2014). Recent climate and air pollution impacts on indian agriculture. Proc. Natl. Acad. Sci. U. S. A. 111, 16319–16324. https://doi.org/10.1073/pnas.1317275111424626925368149
- Campbell, B.M., Beare, D.J., Bennett, E.M., Hall-Spencer, J.M., Ingram, J.S.I., Jaramillo, F., Ortiz, R., Ramankutty, N., Sayer, J.A., Shindell, D., (2017). Agriculture production as a major driver of the earth system exceeding planetary boundaries. Ecol. Soc. 22. https://doi.org/10.5751/ES-09595-220408
- Census of India, (2011). Cities having population 1 lakh and above.
- Cesnulyte, V., Lindfors, A. V., Pitkänen, M.R.A., Lehtinen, K.E.J., Morcrette, J.J., Arola, A., (2014). Comparing ECMWF AOD with AERONET observations at visible and UV wavelengths. Atmos. Chem. Phys. 14, 593–608. https://doi.org/10.5194/acp-14-593-2014
- Chen, X., Ding, J., Liu, J., Wang, J., Ge, X., Wang, R., Zuo, H., (2021). Validation and comparison of high-resolution MAIAC aerosol products over Central Asia. Atmos. Environ. 251, 118273. https://doi.org/10.1016/J.ATMOSENV.2021.118273
- Choudhry, P., Misra, A., Tripathi, S.N., (2012). Study of MODIS derived AOD at three different locations in the Indo Gangetic Plain: Kanpur, Gandhi College and Nainital. Ann. Geophys. 30, 1479–1493. https://doi.org/10.5194/angeo-30-1479-2012
- Chowdhury, S., Dey, S., Guttikunda, S., Pillarisetti, A., Smith, K.R., Girolamo, L. Di, (2019). Indian annual ambient air quality standard is achievable by completely mitigating emissions from household sources. Proc. Natl. Acad. Sci. U. S. A. 166, 10711–10716. https://doi.org/10.1073/pnas.1900888116656116330988190
- Dahiya, S., Myllyvirta, L., Sivalingam, N., (2017). Airpocalyse- Assessment of Air Pollution in Indian Cities. Greenpeace, India. Retrieved January 8, 2017, from https://doi.org/10.1080/19485565.1983.99885436680803
- David, L.M., Ravishankara, A.R., Kodros, J.K., Venkataraman, C., Sadavarte, P., Pierce, J.R., Chaliyakunnel, S., Millet, D.B., (2018). Aerosol Optical Depth Over India. J. Geophys. Res. Atmos. 123, 3688–3703. https://doi.org/10.1002/2017JD027719789438533614367
- Dey, S., Di Girolamo, L., (2010). A climatology of aerosol optical and microphysical properties over the Indian subcontinent from 9 years (2000-2008) of Multiangle Imaging Spectroradiometer (MISR) data. J. Geophys. Res. Atmos. 115, 1–22. https://doi.org/10.1029/2009JD013395
- Dey, S., Purohit, B., Balyan, P., Dixit, K., Bali, K., Kumar, A., Imam, F., Chowdhury, S., Ganguly, D., Gargava, P., Shukla, V. K., (2020). A Satellite-Based High-Resolution (1-km) Ambient PM2.5 Database for India over Two Decades (2000–2019): Applications for Air Quality Management. Remote Sens. 12, 3872. https://doi.org/10.3390/rs12233872
- Evans, J., van Donkelaar, A., Martin, R. V., Burnett, R., Rainham, D.G., Birkett, N.J., Krewski, D., (2013). Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environ. Res. 120, 33–42. https://doi.org/10.1016/j.envres.2012.08.00522959329
- Falah, S., Mhawish, A., Sorek-Hamer, M., Lyapustin, A.I., Kloog, I., Banerjee, T., Kizel, F., Broday, D.M., (2021). Impact of environmental attributes on the uncertainty in MAIAC/MODIS AOD retrievals: A comparative analysis. Atmos. Environ. 262, 118659. https://doi.org/10.1016/J.ATMOSENV.2021.118659
- Ghosh, S., N., K.V., Kumar, S., Midya, K., (2021). Seasonal Contrast of Land Surface Temperature in Faridabad: An Urbanized District of Haryana, India, In: IGI, G. (Ed.), Methods and Applications of Geospatial Technology in Sustainable Urbanism (pp. 217–250). IGI Global. https://doi.org/10.4018/978-1-7998-2249-3.ch008
- Gogikar, P., Tyagi, B., (2016). Assessment of particulate matter variation during 2011–2015 over a tropical station Agra, India. Atmos. Environ. 147, 11–21. https://doi.org/10.1016/j.atmosenv.2016.09.063
- Gupta, P., Remer, L.A., Levy, R.C., Mattoo, S., (2018). Validation of MODIS 3km land aerosol optical depth from NASA’s EOS Terra and Aqua missions. Atmos. Meas. Tech. 11, 3145–3159. https://doi.org/10.5194/amt-11-3145-2018
- Habib, A., Chen, B., Khalid, B., Tan, S., Che, H., Mahmood, T., Shi, G., Butt, M.T., (2019). Estimation and inter-comparison of dust aerosols based on MODIS, MISR and AERONET retrievals over Asian desert regions. J. Environ. Sci. (China) 76, 154–166. https://doi.org/10.1016/j.jes.2018.04.01930528007
- Han, S., Bian, H., Zhang, Y., Wu, J., Wang, Y., Tie, X., Li, Y., Li, X., Yao, Q., (2012). Effect of aerosols on visibility and radiation in spring 2009 in Tianjin, China. Aerosol Air Qual. Res. 12, 211–217. https://doi.org/10.4209/aaqr.2011.05.0073
- Hansen, J., R., R., (1997). Radiative forcing and climate rrsponse. J. Geophys. Res. 102, 6831–6864.10.1029/96JD03436
- Hoff, R.M., Christopher, S.A., (2009). Remote sensing of particulate pollution from space: Have we reached the promised land? J. Air Waste Manag. Assoc. 59, 645–675. https://doi.org/10.3155/1047-3289.59.6.645
- Hsu, N.C., Jeong, M.J., Bettenhausen, C., Sayer, A.M., Hansell, R., Seftor, C.S., Huang, J., Tsay, S.C., (2013). Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 118, 9296–9315. https://doi.org/10.1002/jgrd.50712
- Hsu, N.C., Tsay, S.C., King, M.D., Herman, J.R., (2004). Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 42, 557–569. https://doi.org/10.1109/TGRS.2004.824067
- IQAir AirVisual (2018). World Air Quality Report, 2018.
- Jiang, X., Liu, Y., Yu, B., Jiang, M., (2007). Comparison of MISR aerosol optical thickness with AERONET measurements in Beijing metropolitan area. Remote Sens. Environ. 107, 45–53. https://doi.org/10.1016/j.rse.2006.06.022
- Jin, Q., Wang, C., (2018). The greening of Northwest Indian subcontinent and reduction of dust abundance resulting from Indian summer monsoon revival. Sci. Rep. 8, 1–9. https://doi.org/10.1038/s41598-018-23055-5585470429545562
- Kahn, R.A., Gaitley, B.J., (2015). Atmospheres An analysis of global aerosol type as retrieved by MISR. Journal of Geophysical Research. Retrieved April 12, 2015, from https://doi.org/10.1002/2015JD023322.
- Kaufman, Y.J., Tanré, D., Boucher, O., (2002). A satellite view of aerosols in the climate system. Nature 419, 215–223. https://doi.org/10.1038/nature0109112226676
- Kharol, S., Kaskaoutis, D., Sharma, A. R., Singh, R. P., (2013). Long-Term (1951–2007) Rainfall Trends around Six Indian Cities: Current State, Meteorological, and Urban Dynamics. Adv. Meteorol. 2013. 1-15. https://doi.org/10.1155/2013/572954
- Kumar, M., Raju, M.P., Singh, R.S., Banerjee, T., (2017). Impact of drought and normal monsoon scenarios on aerosol induced radiative forcing and atmospheric heating in Varanasi over middle Indo-Gangetic Plain. J. Aerosol Sci. 113, 95–107. https://doi.org/10.1016/j.jaerosci.2017.07.016
- Kumar, M., Singh, R.S., Banerjee, T., (2015). Associating airborne particulates and human health: Exploring possibilities: Comment on: Kim, Ki-Hyun, Kabir, E. and Kabir, S. 2015. A review on the human health impact of airborne particulate matter. Environment International 74 (2015) 136-143. Environ. Int. https://doi.org/10.1016/j.envint.2015.06.00226093957
- Kumar, R., Nivit, Y.K., (2018). MAKEOVER: Conversion of brick kilns in Delhi-NCR to a cleaner technology—A status report, Centre for Science and Environment. New Delhi.
- Kumar, S., Ghosh, S., Singh, S., (2022). Polycentric urban growth and identification of urban hot spots in Faridabad, the million-plus metropolitan city of Haryana, India: a zonal assessment using spatial metrics and GIS. Environ. Dev. Sustain. 24, 8246–8286. https://doi.org/10.1007/s10668-021-01782-6
- Kumar, S., Midya, K., Ghosh, S., Singh, S., (2021). Pixel-Based vs. Object-Based Anthropogenic Impervious Surface Detection: Driver for Urban-Rural Thermal Disparity in Faridabad, Haryana, India. Geocarto Int. 0, 1–23. https://doi.org/10.1080/10106049.2021.2002429
- Kumar, T.K., Rao, S.V.B., (2012). Seasonal variations of aerosol optical depth over indian subcontinent. IJCRR 04, 87–95.
- Kuttippurath, J., Singh, A., Dash, S.P., Mallick, N., Clerbaux, C., Van Damme, M., Clarisse, L., Coheur, P.F., Raj, S., Abbhishek, K., Varikoden, H., (2020). Record high levels of atmospheric ammonia over India: Spatial and temporal analyses. Sci. Total Environ. 740, 139986. https://doi.org/10.1016/j.scitotenv.2020.13998632927535
- Lau, K.M., Kim, K.M., (2006). Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett. 33, 1–5. https://doi.org/10.1029/2006GL027546
- Levy, R.C., Mattoo, S., Munchak, L.A., Remer, L.A., Sayer, A.M., Patadia, F., Hsu, N.C., (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 6, 2989–3034. https://doi.org/10.5194/amt-6-2989-2013
- Levy, R.C., Remer, L.A., Kleidman, R.G., Mattoo, S., Ichoku, C., Kahn, R., Eck, T.F., (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 10, 10399–10420. https://doi.org/10.5194/acp-10-10399-2010
- Li, R., Ma, T., Xu, Q., Song, X., (2018). Using MAIAC AOD to verify the PM2.5 spatial patterns of a land use regression model. Environ. Pollut. 243, 501–509. https://doi.org/10.1016/J.ENVPOL.2018.09.026
- Lyapustin, A., Korkin, S., Wang, Y., Quayle, B., Laszlo, I., (2012). Erratum: Discrimination of biomass burning smoke and clouds in MAIAC algorithm published (Atmospheric Chemistry and Physics (2012) 12 (9679-9686)). Atmos. Chem. Phys. 12, 10631. https://doi.org/10.5194/acp-12-10631-2012
- Lyapustin, A., Wang, Y., Korkin, S., Huang, D., (2018). MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 11, 5741–5765. https://doi.org/10.5194/amt-11-5741-2018
- Mangla, R., J, I., Chakra, S.S., (2020). Inter-comparison of multi-satellites and Aeronet AOD over Indian Region. Atmos. Res. 240, 104950. https://doi.org/10.1016/j.atmosres.2020.104950
- Martin, R. V., (2008). Satellite remote sensing of surface air quality. Atmos. Environ. 42, 7823–7843. https://doi.org/10.1016/j.atmosenv.2008.07.018
- Mhawish, A., Banerjee, T., Broday, D.M., Misra, A., Tripathi, S.N., (2017). Evaluation of MODIS Collection 6 aerosol retrieval algorithms over Indo-Gangetic Plain: Implications of aerosols types and mass loading. Remote Sens. Environ. 201, 297–313. https://doi.org/10.1016/j.rse.2017.09.016
- Mhawish, A., Banerjee, T., Sorek-Hamer, M., Lyapustin, A., Broday, D.M., Chatfield, R., (2019). Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sens. Environ. 224, 12–28. https://doi.org/10.1016/j.rse.2019.01.033
- Mhawish, A., Kumar, M., Mishra, A.K., Srivastava, P.K., Banerjee, T., (2018). Remote Sensing of Aerosols From Space: Retrieval of Properties and Applications, In: Remote Sensing of Aerosols, Clouds, and Precipitation (pp. 45–83). Elsevier Inc. https://doi.org/10.1016/B978-0-12-810437-8.00003-7
- Mhawish, A., Sorek-Hamer, M., Chatfield, R., Banerjee, T., Bilal, M., Kumar, M., Sarangi, C., Franklin, M., Chau, K., Garay, M., Kalashnikova, O., (2021). Aerosol characteristics from earth observation systems: A comprehensive investigation over South Asia (2000–2019). Remote Sens. Environ. 259, 112410. https://doi.org/10.1016/J.RSE.2021.112410
- National Capital Region Planning Board, (2015). Economic profile of NCR 2015 final report.
- Pal, R., Chowdhury, S., Dey, S., Sharma, A.R., (2018). 18-year ambient PM2.5 exposure and night light trends in Indian cities: Vulnerability assessment. Aerosol Air Qual. Res. 18, 2332–2342. https://doi.org/10.4209/aaqr.2017.10.0425
- Qin, W., Fang, H., Wang, L., Wei, J., Zhang, M., Su, X., Bilal, M., Liang, X., (2021). MODIS high-resolution MAIAC aerosol product: Global validation and analysis. Atmos. Environ. 264, 118684. https://doi.org/10.1016/j.atmosenv.2021.118684
- Ramachandran, S., Rupakheti, M., Lawrence, M.G., (2020). Aerosol-induced atmospheric heating rate decreases over South and East Asia as a result of changing content and composition. Sci. Rep. 10, 1–17. https://doi.org/10.1038/s41598-020-76936-z767624333208825
- Ramanathan, V., Crutzen, P. J., Kiehl, J. T., Rosenfeld, D., (2001). Aerosols, Climate, and the Hydrological Cycle. Sci. 294, 2119–2124. https://doi.org/10.1126/science.106403411739947
- Ramanathan, V., Ramana, M. V., (2005). Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure Appl. Geophys. 162, 1609–1626. https://doi.org/10.1007/s00024-005-2685-8
- Ranjan, K., Sharma, V., Ghosh, S., (2022). Assessment of Urban Growth and Variation of Aerosol Optical Depth in Faridabad District, Haryana, India. Pollution, 8, 447–461. https://doi.org/10.22059/POLL.2021.329185.1163
- Remer, A, L., Kaufman, Y.J., Tanré, D., Mattoo, S., Chu, D.A., Martins, J. V, Li, R.R., Ichoku, C., Levy, R.C., Kleidman, R.G., Eck, T.F., Vermote, E., and B N Holben, (2005). The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 62, 947–973.10.1175/JAS3385.1
- Remer, L.A., Mattoo, S., Levy, R.C., Munchak, L.A., (2013). MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 6, 1829–1844. https://doi.org/10.5194/amt-6-1829-2013
- Sayer, A.M., Hsu, N.C., Bettenhausen, C., Jeong, M.J., (2013). Validation and uncertainty estimates for MODIS Collection 6 “deep Blue” aerosol data. J. Geophys. Res. Atmos. 118, 7864–7872. https://doi.org/10.1002/jgrd.50600
- Sayer, A.M., Munchak, L.A., Hsu, N.C., Levy, R.C., Bettenhausen, C., Jeong, M.-J., (2014). MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 119, 13,965-13,989. https://doi.org/10.1002/2014JD022453
- Seinfeld, J.H., Bretherton, C., Carslaw, K.S., Coe, H., DeMott, P.J., Dunlea, E.J., Feingold, G., Ghan, S., Guenther, A.B., Kahn, R., Kraucunas, I., Kreidenweis, S.M., Molina, M.J., Nenes, A., Penner, J.E., Prather, K.A., Ramanathan, V., Ramaswamy, V., Rasch, P.J., Ravishankara, A.R., Rosenfeld, D., Stephens, G., Wood, R., (2016). Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. Proc. Natl. Acad. Sci. U. S. A. 113, 5781–5790. https://doi.org/10.1073/pnas.1514043113488934827222566
- Sen, A., Abdelmaksoud, A.S., Nazeer Ahammed, Y., Alghamdi, M.,, Banerjee, T., Bhat, M.A., Chatterjee, A., Choudhuri, A.K., Das, T., Dhir, A., Dhyani, P.P., Gadi, R., Ghosh, S., Kumar, K., Khan, A.H., Khoder, M., Maharaj Kumari, K., Kuniyal, J.C., Kumar, M., Lakhani, A., Mahapatra, P.S., Naja, M., Pal, D., Pal, S., Rafiq, M., Romshoo, S.A., Rashid, I., Saikia, P., Shenoy, D.M., Sridhar, V., Verma, N., Vyas, B.M., Saxena, M., Sharma, A., Sharma, S.K., Mandal, T.K., (2017). Variations in particulate matter over Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: Role of pollution pathways. Atmos. Environ. 154, 200–224. https://doi.org/10.1016/j.atmosenv.2016.12.054
- Sever, L., Alpert, P., Lyapustin, A., Wang, Y., Chudnovsky, A., (2017). An example of aerosol pattern variability over bright surface using high resolution MODIS MAIAC: The eastern and western areas of the Dead Sea and environs. Atmos. Environ. 165, 359–369. https://doi.org/10.1016/J.ATMOSENV.2017.06.047
- Sharma, R., Pradhan, L., Kumari, M., Bhattacharya, P., 2022. Urban Green Space Planning and Development in Urban Cities Using Geospatial Technology: A Case Study of Noida. J. Landsc. Ecol. Republic 15, 27–46. https://doi.org/10.2478/jlecol-2022-0002
- Sharma, V., Ghosh, S., Bilal, M., Dey, S., Singh, S., (2021). Performance of MODIS C6.1 Dark Target and Deep Blue aerosol products in Delhi National Capital Region, India: Application for aerosol studies. Atmos. Pollut. Res. 12, 65–74. https://doi.org/10.1016/j.apr.2021.01.023
- Shastri, S., Singh, P., Verma, P., Kumar Rai, P., Singh, A.P., (2020). Land cover change dynamics and their impacts on thermal environment of Dadri block, Gautam budh Nagar, India. J. Landsc. Ecol. Republic 13, 1–13. https://doi.org/10.2478/jlecol-2020-0007
- Singh, N., Mhawish, A., Deboudt, K., Singh, R.S., Banerjee, T., (2017a). Organic aerosols over Indo-Gangetic Plain: Sources, distributions and climatic implications. Atmos. Environ. 157, 59–74. https://doi.org/10.1016/j.atmosenv.2017.03.008
- Singh, N., Murari, V., Kumar, M., Barman, S.C., Banerjee, T., (2017b). Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model. Environ. Pollut. 223, 121–136. https://doi.org/10.1016/j.envpol.2016.12.07128063711
- Tanré, D., Kaufman, Y.J., Herman, M., Mattoo, S., (1997). Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res. Atmos. 102, 16971–16988.10.1029/96JD03437
- Tao, M., Wang, J., Li, R., Wang, Lili, Wang, Lunche, Wang, Z., Tao, J., Che, H., Chen, L., (2019). Performance of MODIS high-resolution MAIAC aerosol algorithm in China: Characterization and limitation. Atmos. Environ. 213, 159–169. https://doi.org/10.1016/J.ATMOSENV.2019.06.004
- Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P.K., Veefkind, P., Levelt, P., (2007). Aerosols and surface UV products form Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 112, 1–14. https://doi.org/10.1029/2007JD008809
- Verma, R.C.; S. ’B ’, (2017). Urbanisation in Delhi- NCR (National Capital Region), KPMG.
- Wei, J., Peng, Y., Guo, J., Sun, L., (2019). Performance of MODIS Collection 6.1 Level 3 aerosol products in spatial-temporal variations over land. Atmos. Environ. 206, 30–44. https://doi.org/10.1016/j.atmosenv.2019.03.001
- Winker, D.M., Pelon, J., (2003). The CALIPSO Mission. Int. Geosci. Remote Sens. Symp. 2, 1329–1331. https://doi.org/10.1175/2010bams3009.1
- Xie, Y., Zhang, Y., Xiong, X., Qu, J.J., Che, H., (2011). Validation of MODIS aerosol optical depth product over China using CARSNET measurements. Atmos. Environ. 45, 5970–5978. https://doi.org/10.1016/j.atmosenv.2011.08.002
- Zhang, W., Gu, X., Xu, H., Yu, T., Zheng, F., (2016). Assessment of OMI near-UV aerosol optical depth over Central and East Asia. J. Geophys. Res. 121, 382–398. https://doi.org/10.1002/2015JD024103
- Zhang, Z., Wu, W., Fan, M., Wei, J., Tan, Y., Wang, Q., (2019). Evaluation of MAIAC aerosol retrievals over China. Atmos. Environ. 202, 8–16. https://doi.org/10.1016/j.atmosenv.2019.01.013
- Zheng, M., Cass, G.R., Schauer, J.J., Edgerton, E.S., (2002). Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environ. Sci. Technol. 36, 2361–2371. https://doi.org/10.1021/es011275x12075791