Have a personal or library account? Click to login
A Seasonal Investigation on Land Surface Temperature and Spectral Indices in Imphal City, India Cover

A Seasonal Investigation on Land Surface Temperature and Spectral Indices in Imphal City, India

Open Access
|Dec 2022

References

  1. Ali, J.M., Marsh, S.H., Smith, M.J. (2017). A comparison between London and Baghdad surface urban heat islands and possible engineering mitigation solutions. Sustain Cities Soc 29: 159-168. https://doi.org/10.1016/j.scs.2016.12.010
  2. Arnfield, J. (2003). Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23: 1–26. https://doi.org/10.1002/joc.859
  3. Artis, D.A., Carnahan, W.H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12(4), 313–329.10.1016/0034-4257(82)90043-8
  4. Balew, A., Korme, T. (2020). Monitoring land surface temperature in Bahir Dar city and its surrounding using Landsat images. Egypt J Remote Sens Space Sci https://doi.org/10.1016/j.ejrs.2020.02.001
  5. Carlson, T.N., Ripley, D.A. (1997). On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens Environ 62: 241-252. https://doi.org/10.1016/S0034-4257(97)00104-1
  6. Chen, L., Li, M., Huang, F., Xu, S. (2013). Relationships of LST to NDBI and NDVI in Wuhan City based on Landsat ETM+ image. In 6th International Congress on Image and Signal Processing (CISP) (pp. 840-845), Hangzhou, 2013.10.1109/CISP.2013.6745282
  7. Chen, X.L., Zhao, H.M., Li, P.X., Yi, Z.Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2): 133–146. https://doi.org/10.1016/j.rse.2005.11.016
  8. Chen, X., Zhang, Y. (2017). Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustain Cities Soc. 32: 87-99. https://doi.org/10.1016/j.scs.2017.03.013
  9. Deilami, K., Kamruzzaman, M., Liu, Y. (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int J Appl Earth Obs Geoinf 67: 30-42. https://doi.org/10.1016/j.jag.2017.12.009
  10. Equere, V., Mirzaei, P.A., Riffat, S. (2020). Definition of a new morphological parameter to improve prediction of urban heat island. Sustain Cities Soc 56: 102021. https://doi.org/10.1016/j.scs.2020.102021
  11. Essa, W., Verbeiren, B., Van der Kwast, J., Van de Voorde, T., Batelaan, O. (2012)., Evaluation of the DisTrad thermal sharpening methodology for urban areas. Int J Appl Earth Obs Geoinf 19: 163-172. https://doi.org/10.1016/j.jag.2012.05.010
  12. Feng, Y., Li, H., Tong, X., Chen, L., Liu, Y. (2018). Projection of land surface temperature considering the effects of future land change in the Taihu Lake Basin of China. Global Planet Change 167: 24-34. https://doi.org/10.1016/j.gloplacha.2018.05.007
  13. Ferrelli, F., Huamantinco, M.A., Delgado, D.A., Piccolo, M.C. (2018). Spatial and temporal analysis of the LST-NDVI relationship for the study of land cover changes and their contribution to urban planning in Monte Hermoso, Argentina. Doc Anal Geogr 64 (1): 25-47. https://doi.org/10.5565/rev/dag.355
  14. Feyisa, G.L., Meilby, H., Jenerette, G.D., Pauliet, S. (2016). Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia. Remote Sens Environ 175: 14-31. https://doi.org/10.1016/j.rse.2015.12.026
  15. Filho, WLFC, De Barros, Santiago, D., De Oliveira-Júnior, J.F., Da Silva Junior, C.A. (2019). Impact of urban decadal advance on land use and land cover and surface temperature in the city of Maceió, Brazil. Land Use Policy 87: 104026. https://doi.org/10.1016/j.landusepol.2019.104026
  16. Gorgani, S.A., Panahi, M., Rezaie, F. (2013). The relationship between NDVI and LST in the Urban area of Mashhad, Iran. International Conference on Civil Engineering Architecture and Urban Sustainable Development. November, Tabriz, Iran.
  17. Guha, S., Govil, H. (2021). Annual assessment on the relationship between land surface temperature and six remote sensing indices using Landsat data from 1988 to 2019. Geocarto International. https://doi.org/10.1080/10106049.2021.1886339
  18. Guha, S., Govil, H., Mukherjee, S. (2017). Dynamic analysis and ecological evaluation of urban heat islands in Raipur city, India. Journal of Applied Remote Sensing. 11(3): 036020. https://doi.org/10.1117/1.JRS.11.036020
  19. Guha, S., Govil, H., Taloor, A.K., Gill, N., Dey, A. (2022). Land surface temperature and spectral indices: A seasonal study of Raipur City. Geodesy and Geodynamics. 13(1): 72-82. https://doi.org/10.1016/j.geog.2021.05.002
  20. Jamei, Y., Rajagopalan, P., Sun, Q.C. (2019). Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia. Sci Total Environ 659: 1335-1351. https://doi.org/10.1016/j.scitotenv.2018.12.30831096344
  21. Kalota, D. (2017). Exploring relation of land surface temperature with selected variables using geographically weighted regression and ordinary least square methods in Manipur State, India. Geocarto Int 32(10): 1105-1119. https://doi.org/10.1080/10106049.2016.1195883
  22. Liang, B.P., Li, Y., Chen, K.Z. (2012). A Research on Land Features and Correlation between NDVI and Land Surface Temperature in Guilin City. Remote Sens Tech Appl 27: 429–435.
  23. Li, J., Song, C., Cao, L., Meng, X., Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens Environ 115: 3249–3263.
  24. Lopez, J.M.R., Heider, K., Scheffran, J. (2017). Frontiers of urbanization: Identifying and explaining urbanization hot spots in the south of Mexico City using human and remote sensing. Appl Geogr 79: 1-10.
  25. Ma, X., Peng, S. (2022). Research on the spatiotemporal coupling relationships between land use/land cover compositions or patterns and the surface urban heat island effect. Environ Sci Pollut Res Int 29(26): 39723-39742. https://doi.org/10.1007/s11356-022-18838-335107726
  26. Maishella, A., Dewantoro, B.E.B., Aji, M.A.P. (2018). Correlation Analysis of Urban Development and Land Surface Temperature Using Google Earth Engine in Sleman Regency, Indonesia. IOP Conf. Series: Earth and Environmental Science 540 (2020) 012018. https://doi.org/10.1088/1755-1315/540/1/012018
  27. Marzban, F., Sodoudi, S., Preusker, R. (2018). The influence of land-cover type on the relationship between LST-NDVI and LST-Tair. Int J Remote Sens 39(5): 1377-1398. https://doi.org/10.1080/01431161.2017.1462386
  28. Mirzaei, P.A. (2015). Recent challenges in modeling of urban heat island. Sustain Cities Soc 19: 200–206. https://doi.org/10.1016/j.scs.2015.04.001
  29. Mondal, A., Guha, S., Kundu, S. (2021). Dynamic status of land surface temperature and spectral indices in Imphal city, India from 1991 to 2021. Geomatics, Natural Hazards and Risk. 12(1): 3265-3286. https://doi.org/10.1080/19475705.2021.2008023
  30. Mushore, T.D., Odindi, J., Dube, T., Matongera, T.N., Mutangam, O. (2017). Remote sensing applications in monitoring urban growth impacts on in-and-out door thermal conditions: A review. Remote Sens Appl Soc Environ 8: 83-93. https://doi.org/10.1016/j.rsase.2017.08.001
  31. Nie, Q., Man, W., Li, Z., Huang, Y. (2016). Spatiotemporal Impact of Urban Impervious Surface on Land Surface Temperature in Shanghai, China. Can J Remote Sens 42(6): 680-689. http://dx.doi.org/10.1080/07038992.2016.121748410.1080/07038992.2016.1217484
  32. Nimish, G., Bharath, H.A., Lalitha, A. (2020). Exploring temperature indices by deriving relationship between land surface temperature and urban landscape. Remote Sens Appl Soc Environ 18: 100299. https://doi.org/10.1016/j.rsase.2020.100299
  33. Pearsall, H. (2017). Staying cool in the compact city: Vacant land and urban heating in Philadelphia, Pennsylvania. Appl Geogr 79: 84–92. http://dx.doi.org/10.1016/j.apgeop.2016.12.010
  34. Peng, J., Xie, P., Liu, Y., Ma, J. (2016). Urban Thermal Environment Dynamics and Associated Landscape Pattern Factors: A Case Study in the Beijing Metropolitan Region. Remote Sens Environ 173: 145–155.
  35. Prehodko, L., Goward, S.N. (1997). Estimation of Air Temperature from Remotely Sensed Surface Observations. Remote Sens Environ 60: 335–346. https://doi:10.1016/S0034-4257(96)00216-710.1016/S0034-4257(96)00216-7
  36. Rinner, C., Hussain, M. (2011). Toronto’s urban heat island exploring the relationship between land use and surface temperature. Remote Sens 3: 1251-1265. https://doi.org/10.3390/rs3061251
  37. Rizwan, A.M., Dennis, L.Y.C., Liu, C. (2008). A review on the generation, determination and mitigation of Urban Heat Island. J Environ Sci 20: 120–128.
  38. Roy, S., Pandit, S., Eva, E.A., Bagmar, M.S.H., Papia, M., Banik, L., Dube, T., Rahman, F., Razi, M.A. (2020). Examining the nexus between land surface temperature and urban growth in Chattogram Metropolitan Area of Bangladesh using long term Landsat series data. Urban Clim 32: 100593. https://doi.org/10.1016/j.uclim.2020.100593
  39. Sharma, R., Joshi, P.K. (2016). Mapping environmental impacts of rapid urbanization in the National Capital Region of India using remote sensing inputs. Urban Clim 15: 70–82. https://doi.org/10.1016/j.uclim.2016.01.004
  40. Sobrino, J.A., Raissouni, N., Li, Z. (2001). A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens Environ 75(2): 256–266. https://doi.org/10.1016/S0034-4257(00)00171-1
  41. Sobrino, J.A., Jimenez-Munoz, J.C., Paolini, L. (2004). Land surface temperature retrieval from Landsat TM5. Remote Sens Environ 9: 434–440. https://doi:10.1016/j.rse.2004.02.00310.1016/j.rse.2004.02.003
  42. Song, X., Hansen, M.C., Stehman, S.V., Potapov, P.V., Tyunkvina, A., Vermote, E.F., Townshend, J.R. (2018). Global land change from 1982 to 2016. Nature 560: 639–643. https://doi:10.1038/s41586-018-0411-910.1038/s41586-018-0411-9636633130089903
  43. Son, N.T., Chen, C.F., Chen, C.R. (2020). Urban expansion and its impacts on local temperature in San Salvador, El Salvador. Urban Clim 32: 100617. https://doi.org/10.1016/j.uclim.2020.100617
  44. Son, Y.S., Kang, M.K., Yoon, W.J. (2014). Lithological and mineralogical survey of the Oyu Tolgoi region, South-eastern Gobi, Mongolia using ASTER reflectance and emissivity data. Int J Appl Earth Obs Geoinf 26: 205–216.
  45. Song, J., Du, S., Feng, X., Guo, L. (2014). The Relationships Between Landscape Compositions and Land Surface Temperature: Quantifying Their Resolution Sensitivity With Spatial Correlation Models. Landsc Urban Plan 123: 145–157.
  46. Sun, D., Kafatos, M. (2007). Note on the NDVI-LST Relationship and the Use of Temperature-Related Drought Indices over North Aerica. Geophys Res Lett 34. http://doi:10.1029/2007GL03148510.1029/2007GL031485
  47. Taripanah, F., Ranjbar, A. (2021). Quantitative analysis of spatial distribution of land surface temperature (LST) in relation Ecohydrological, terrain and socio- economic factors based on Landsat data in mountainous area. Adv Space Res 68(9): 3622-3640. https://doi.org/10.1016/j.asr.2021.07.008
  48. Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2): 127–150.
  49. Weng, Q.H., Lu, D.S., Schubring, J. (2004). Estimation of Land Surface Temperature–Vegetation Abundance Rela-tionship for Urban Heat Island Studies. Remote Sens Environ 89: 467-483. https://doi:10.1016/j.rse.2003.11.00510.1016/j.rse.2003.11.005
  50. Xu, H. (2006). Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27(14): 3025–3033.
  51. Yue, W., Xu, J., Tan, W., Xu, L. (2007). The Relationship between Land Surface Temperature and NDVI with Remote Sensing. Application to Shanghai Landsat 7 ETM+ data. Int J Remote Sens 28: 3205–3226. https://doi.org/10.1080/01431160500306906
  52. Zhang, Y., Odeh, I.O.A., Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int J Appl Earth Obs Geoinf 11(4): 256-264. https://doi.org/10.1016/j.jag.2009.03.001
  53. Zhao, H.M., Chen, X.L. (2005). Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. Geoscience and Remote Sensing Symposium, 3(25–29): 1666−1668. https://doi.org/10.1109/IGARSS.2005.1526319
  54. Zhao, M., Cai, H., Qiao, Z., Xu, X. (2016). Influence of urban expansion on the urban heat island effect in Shanghai. Int J Geogr Inf Sci 30(12): 2421–2441. https://doi.org/10.1080/13658816.2016.1178389
  55. Zha, Y., Gao, J., Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3): 583-594. https://doi.org/10.1080/01431160304987
  56. Website: http://earthexplorer.usgs.gov/ https://earth.google.com/web/ https://imc.mn.gov.in/
DOI: https://doi.org/10.2478/jlecol-2022-0015 | Journal eISSN: 1805-4196 | Journal ISSN: 1803-2427
Language: English
Page range: 1 - 18
Submitted on: Aug 5, 2022
|
Accepted on: Sep 14, 2022
|
Published on: Dec 8, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Anupam Pandey, Arun Mondal, Subhanil Guha, Pradeep Kumar Upadhyay, Rashmi, published by Czech Society for Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.