Have a personal or library account? Click to login
Changing Sensitivity of Diverse Tropical Biomes to Precipitation Consistent with the Expected Carbon Dioxide Fertilization Effect Cover

Changing Sensitivity of Diverse Tropical Biomes to Precipitation Consistent with the Expected Carbon Dioxide Fertilization Effect

Open Access
|Jun 2022

References

  1. Abera, T.A., J. Heiskanen, E.E. Maeda, B.T. Hailu, P.K.E. Pellikka (Submitted). Improved detection of ecosystem structural change reveals dominant fractional woody cover decline in Eastern Africa. Submitted to RSE.
  2. Amara, E., H. Adhikari, M. Munyao, M. Siljander, P. Omondi, J. Heiskanen & P. Pellikka, (2020). Aboveground biomass distribution in a multi-use savannah landscape in southeastern Kenya: impact of land use and fences. Land 2020, 9, 381; doi:10.3390/land9100381
  3. Vilagrosa, A., Chirino, E., Peguero-Pina, J., Barigah T., Gil-Pelegrín, E., and Cochard, H. (2013). Plant responses to drought stress: From morphological to molecular features. In Plant Responses to Drought Stress: From Morphological to Molecular Features (pp. 1–466). doi: 10.1007/978-3-642-32653-0.
  4. Asbjornsen, H., Shepherd G., Helmers M., Mora G., (2008). Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the Corn Belt Region of the Midwestern U.S., Plant and Soil, 308(1–2), pp. 69–92. doi: 10.1007/s11104-008-9607-3.
  5. Auken, O. W. Van (2000). Shrub Invasions of North American Semiarid Grasslands, Annual Review of Ecology and Systematics, 31, pp. 197–215.
  6. Bat-oyun, T., Shinoda, M. and Tsubo, M. (2012). Effects of water and temperature stresses on radiation use efficiency in a semi-arid grassland, 9145. doi: 10.1080/17429145.2011.564736.
  7. Belay, T. A., Totland, T. and Moe, S. R. (2013). Woody vegetation dynamics in the rangelands of lower Omo region, southwestern Ethiopia, Journal of Arid Environments. Elsevier Ltd, 89(July 2015), pp. 94–102. doi: 10.1016/j.jaridenv.2012.10.006.
  8. Belsky, A. J. & Amundson, R. G. (1992). (1992). Effects of trees on understorey vegetation and soils at forest-savanna boundaries in East Africa. In Furley, P. A., Proctor, J. & Ratter, J. A. (ed.) The Nature and Dynamics of Forest-Savanna Boundaries (pp. 353–366), London: Chapman & Hall.
  9. Buitenwerf, R. et al. (2012). Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver, Global Change Biology, 18(2), pp. 675–684. doi: 10.1111/j.1365-2486.2011.02561.x.
  10. Camberlin, P. et al. (2007). Determinants of the interannual relationships between remote sensed photosynthetic activity and rainfall in tropical Africa, Remote Sensing of Environment, 106(2), pp. 199–216. doi: 10.1016/j.rse.2006.08.009.
  11. DeLucia, E. H., George, K. and Hamilton, J. G. (2002). Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide, 2050(Ipcc 1996), pp. 1003–1010.
  12. Eggemeyer, K. D. et al. (2009). Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland, Tree Physiology, 29(2), pp. 157–169. doi: 10.1093/treephys/tpn019.19203941
  13. Eldridge, D. J. et al. (2011). Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis, Ecology Letters, 14(7), pp. 709–722. doi: 10.1111/j.1461-0248.2011.01630.x.356396321592276
  14. Friedl, M., Sulla-Menashe, D. (2019). MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. Retrieved July, 16th, 202 from https://doi.org/10.5067/MODIS/MCD12Q1.006’.
  15. Gonsamo, A., Ciais, P., Miralles, D.G., Sitch, S., Dorigo, W., Lombardozzi, D., Friedlingstein, P., Nabel, J.E., Goll, D.S., O’Sullivan, M., Arneth, A., Anthoni, P., Jain, A.K., Wiltshire, A., Peylin, P. and Cescatti, A. (2021). Greening drylands despite warming consistent with carbon dioxide fertilization effect. Global Change Biology. Accepted Author Manuscript. https://doi.org/10.1111/gcb.15658.33910268
  16. Gonsamo, A., Chen, J.M. and Lombardozzi, D. (2016). Global vegetation productivity response to climatic oscillations during the satellite era. Glob Change Biol, 22: 3414-3426. doi:10.1111/gcb.13258.26919189
  17. Gray, S. B. and Brady, S. M. (2016). Plant developmental responses to climate change, Developmental Biology. Elsevier, 419(1), pp. 64–77. doi: 10.1016/j.ydbio.2016.07.023.27521050
  18. Guan, K. et al. (2018). Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length, Environmental Research Letters, 13(2). doi: 10.1088/1748-9326/aa9f30.
  19. Guay, K. C. et al. (2014). Vegetation productivity patterns at high northern latitudes: A multi-sensor satellite data assessment, Global Change Biology, 20(10), pp. 3147–3158. doi: 10.1111/gcb.12647.431285424890614
  20. Guo Liu, H. L. and Y. Y. C. (2013). Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes, Environmental Research Letters. doi: 10.1088/1748-9326/8/2/025009.
  21. Harris, I. et al. (2014). Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset, International Journal of Climatology, 34(3), pp. 623–642. doi: 10.1002/joc.3711.
  22. Hilker, T. et al. (2014). Vegetation dynamics and rainfall sensitivity of the Amazon, Proceedings of the National Academy of Sciences of the United States of America, 111(45), pp. 16041–16046. doi: 10.1073/pnas.1404870111.423453925349419
  23. Huxman, T. E. et al. (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems, Oecologia, 141(2), pp. 254–268. doi: 10.1007/s00442-004-1682-4.15338414
  24. IPCC (2012). Climate Change 2014, Special Report of the Intergovernmental Panel on Climate Change. doi: 10.1017/CBO9781139177245.003.
  25. J. L. Monteith (1977). Climate and the efficiency of crop production in Britain, Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 281(980), pp. 277–294. doi: 10.1098/rstb.1977.0140.
  26. Kroël-Dulay, G. et al. (2015). Increased sensitivity to climate change in disturbed ecosystems, Nature Communications, 6, pp. 1–7. doi: 10.1038/ncomms7682.25801187
  27. Leakey, A. D. B. et al. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE, Journal of Experimental Botany, 60(10), pp. 2859–2876. doi: 10.1093/jxb/erp096.19401412
  28. Liao, C., Clark, P. E. and DeGloria, S. D. (2018). Bush encroachment dynamics and rangeland management implications in southern Ethiopia, Ecology and Evolution, 8(23), pp. 11694–11703. doi: 10.1002/ece3.4621.630371130598767
  29. Luvuno, L. et al. (2018). Woody encroachment as a social-ecological regime shift, Sustainability (Switzerland), 10(7), pp. 1–16. doi: 10.3390/su10072221.
  30. McDowell, N. G. and Allen, C. D. (2015). Darcy’s law predicts widespread forest mortality under climate warming, Nature Climate Change, 5(7), pp. 669–672. doi: 10.1038/nclimate2641.
  31. MEA (2005). Ecosystems and human well-being, Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment. doi: 10.5822/978-1-61091-484-0_1.
  32. Medvigy, D. et al. (2009). Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2, Journal of Geophysical Research: Biogeosciences, 114(1). doi: 10.1029/2008JG000812.
  33. Meinzer, F. C. and Zhu, J. (1998). Nitrogen stress reduces the efficiency of the C4 CO2 concentrating system, and therefore quantum yield, in Saccharum (sugarcane) species, Journal of Experimental Botany, 49(324), pp. 1227–1234. doi: 10.1093/jxb/49.324.1227.
  34. Obermeier, W. et al. (2016). Extreme weather conditions reduce the CO2 fertilization effect in temperate C3 grasslands, Geophysical Research Abstracts, 18, p. 14957.
  35. Dermody, O., Weltzin, J., Engel, E., Allen, P., Norby, R., (2007). How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem? Plant and Soil 301, 255-266.10.1007/s11104-007-9443-x
  36. Onofrio, D. D. et al. (2019). Grass and tree cover responses to intra-seasonal rainfall variability vary along a rainfall gradient in African tropical grassy biomes (pp. 1–10). Retrieved December, 9th, 2018 from doi: 10.1038/s41598-019-38933-9.638284830787370
  37. Otto T. Solbrig, Ernesto Medina, and J. F. S. (1996). Determinants of Tropical Savannas, In Silva, D. T. S. E. M. J. F. (ed.) Biodiversity and Savanna Ecosystelll Processes A Global Perspective (pp. 31–44). Verlag Berlin Heidelberg: Springer. doi: 10.1017/CBO9781107415324.004.
  38. Pau, S. et al. (2018). Tropical forest temperature thresholds for gross primary productivity, Ecosphere, 9(7), pp. 1–12. doi: 10.1002/ecs2.2311.
  39. Piao, S. et al. (2014). Evidences for weakning relationship between interannual temperature variability and northern vegetation activity, Nature Communications (pp. 1–7). doi: 10.1038/ncomms6018.25318638
  40. Piao, S. et al. (2017). Weakening temperature control on the interannual variations of spring carbon uptake across northern lands, Nature Climate Change, 7(5), pp. 359–363. doi: 10.1038/nclimate3277.
  41. Pellikka, P.K.E., V. Heikinheimo, J. Hietanen, E. Schäfer, M. Siljander, J. Heiskanen (2018). Impact of land cover change on aboveground carbon stocks in Afromontane landscape in Kenya. Applied Geography Volume 94, May 2018, Pages 178-189.10.1016/j.apgeog.2018.03.017
  42. Norby, R. J., and Zak, D. R. (2011). Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual review of ecology, evolution, and systematics 42, 181-203.10.1146/annurev-ecolsys-102209-144647
  43. Sala, O. E., Gherardi, L. A. and Peters, D. P. C. (2015). Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions, Climatic Change, 131(2), pp. 213–227. doi: 10.1007/s10584-015-1389-z.
  44. Schwinning, S. and Sala, O. E. (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems, Oecologia, 141(2), pp. 211–220. doi: 10.1007/s00442-004-1520-8.15034778
  45. Seddon, A. W. R. et al. (2016). Sensitivity of global terrestrial ecosystems to climate variability, Nature, 531(7593), pp. 229–232. doi: 10.1038/nature16986.26886790
  46. Wullschleger, S. D., Tschaplinski, T. J., Norby, R. J. (2002). Plant water relations at elevated CO2– implications for water-limited environments. Plant, Cell & Environment 25, 319-331.10.1046/j.1365-3040.2002.00796.x11841673
  47. Smith, B., Prentice, I. C. and Sykes, M. T. (2001). Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space, Global Ecology and Biogeography, 10(6), pp. 621–637. doi: 10.1046/j.1466-822X.2001.00256.x.
  48. Smith, M. D. et al. (2017). Assessing community and ecosystem sensitivity to climate change – toward a more comparative approach, Journal of Vegetation Science, 28(2), pp. 235–237. doi: 10.1111/jvs.12524.
  49. S.A. Archer, E.M. Andersen, K.I. Predick, Susan Schwinning, Robert J. Steidl, and S. R. W. (2017). Woody Plant Encroachment: Causes and Consequences, Rangeland Systems, pp. 263–302. doi: 10.1007/978-3-319-46709-2_8.
  50. Subbarao, G.V.; Ito, O. & Berry, W. (2005). Crop Radiation Use Efficiency and Photosynthate Formation-Avenues for Genetic Improvement. 2nd edn. Edited by M. Pessarakli. New York.: Taylor and Francis.
  51. Sühs, R. B., Giehl, E. L. H. and Peroni, N. (2020). Preventing traditional management can cause grassland loss within 30 years in southern Brazil, Scientific Reports, 10(1), pp. 1–9. doi: 10.1038/s41598-020-57564-z.697292831964935
  52. Taub, D. (2015). Effects of Rising Atmospheric Concentrations of Carbon Dioxide on Plants’, Nature Education Knowledge.
  53. Traore, A. K. et al. (2014). 1982–2010 Trends of Light Use Efficiency and Inherent Water Use Efficiency in African vegetation: Sensitivity to Climate and Atmospheric CO2 Concentrations, Remote Sensing, (August), pp. 8923–8944. doi: 10.3390/rs6098923.
  54. Tucker, C. J. et al. (2005). An extended AVHRR 8-kni NDVI dataset compatible with MODIS and SPOT vegetation NDVI data, International Journal of Remote Sensing, 26(20).10.1080/01431160500168686
  55. Venter, Z. S., Cramer, M. D. and Hawkins, H. J. (2018). Drivers of woody plant encroachment over Africa, Nature Communications. US, 9(1), pp. 1–7. Springer. doi: 10.1038/s41467-018-04616-8.599589029891933
  56. Vicente-Serrano, S. M. et al. (2013). Response of vegetation to drought time-scales across global land biomes, Proceedings of the National Academy of Sciences of the United States of America, 110(1), pp. 52–57. doi: 10.1073/pnas.1207068110.353825323248309
  57. Vogel, A., Scherer-Lorenzen, M. and Weigelt, A. (2012). Grassland resistance and resilience after drought depends on management intensity and species richness, PLoS ONE, 7(5). doi: 10.1371/journal.pone.0036992.335396022615865
  58. Walker, A.P., De Kauwe, M.G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R.F., McMahon, S.M., Medlyn, B.E., Moore, D.J.P., Norby, R.J., Zaehle, S., Anderson-Teixeira, K.J., Battipaglia, G., Brienen, R.J.W., Cabugao, K.G., Cailleret, M., Campbell, E., Canadell, J.G., Ciais, P., Craig, M.E., Ellsworth, D.S., Farquhar, G.D., Fatichi, S., Fisher, J.B., Frank, D.C., Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hungate, B.A., Iversen, C.M., Joos, F., Jiang, M., Keenan, T.F., Knauer, J., Körner, C., Leshyk, V.O., Leuzinger, S., Liu, Y., MacBean, N., Malhi, Y., McVicar, T.R., Penuelas, J., Pongratz, J., Powell, A.S., Riutta, T., Sabot, M.E.B., Schleucher, J., Sitch, S., Smith, W.K., Sulman, B., Taylor, B., Terrer, C., Torn, M.S., Treseder, K.K., Trugman, A.T., Trumbore, S.E., van Mantgem, P.J., Voelker, S.L., Whelan, M.E. and Zuidema, P.A. (2021). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol, 229: 2413-2445. https://doi.org/10.1111/nph.16866.32789857
  59. Workie T.G. and Debela H.J. (2018). Climate change and its effects on vegetation phenology across ecoregions of Ethiopia, Global Ecology and Conservation, Volume 13, 2018, https://doi.org/10.1016/j.gecco.2017.e00366.
  60. Wu, X. et al. (2017). Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere, Geophysical Research Letters, 44(12), pp. 6173–6181. doi: 10.1002/2017GL073285.
  61. Yang, Y. et al. (2016). Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests, Journal of Geophysical Research: Biogeosciences, 121(8), pp. 2125–2140. doi: 10.1002/2016JG003475.
  62. Yuan, X. et al. (2015). Effects of precipitation intensity and temperature on ndvi-based grass change over northern china during the period from 1982 to 2011, Remote Sensing, 7(8), pp. 10164–10183. doi: 10.3390/rs70810164.
  63. Yusuf, H. et al. (2011). Assessment of woody species encroachment in the grasslands of Nechisar National Park, Ethiopia, African Journal of Ecology, 49(4), pp. 397–409. doi: 10.1111/j.1365-2028.2011.01271.x.
  64. Zeng, F. W. et al. (2013). Evaluating and quantifying the climate-driven interannual variability in global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) at global scales, Remote Sensing, 5(8), pp. 3918–3950. doi: 10.3390/rs5083918.
DOI: https://doi.org/10.2478/jlecol-2022-0005 | Journal eISSN: 1805-4196 | Journal ISSN: 1803-2427
Language: English
Page range: 78 - 93
Submitted on: Mar 2, 2022
Accepted on: Apr 14, 2022
Published on: Jun 23, 2022
Published by: Czech Society for Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Tenaw Geremew, Alemu Gonsamo, Worku Zewdie, Petri Pellikka, published by Czech Society for Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.