References
- Abera, T.A., J. Heiskanen, E.E. Maeda, B.T. Hailu, P.K.E. Pellikka (Submitted). Improved detection of ecosystem structural change reveals dominant fractional woody cover decline in Eastern Africa. Submitted to RSE.
- Amara, E., H. Adhikari, M. Munyao, M. Siljander, P. Omondi, J. Heiskanen & P. Pellikka, (2020). Aboveground biomass distribution in a multi-use savannah landscape in southeastern Kenya: impact of land use and fences. Land 2020, 9, 381; doi:10.3390/land9100381
- Vilagrosa, A., Chirino, E., Peguero-Pina, J., Barigah T., Gil-Pelegrín, E., and Cochard, H. (2013). Plant responses to drought stress: From morphological to molecular features. In Plant Responses to Drought Stress: From Morphological to Molecular Features (pp. 1–466). doi: 10.1007/978-3-642-32653-0.
- Asbjornsen, H., Shepherd G., Helmers M., Mora G., (2008). Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the Corn Belt Region of the Midwestern U.S., Plant and Soil, 308(1–2), pp. 69–92. doi: 10.1007/s11104-008-9607-3.
- Auken, O. W. Van (2000). Shrub Invasions of North American Semiarid Grasslands, Annual Review of Ecology and Systematics, 31, pp. 197–215.
- Bat-oyun, T., Shinoda, M. and Tsubo, M. (2012). Effects of water and temperature stresses on radiation use efficiency in a semi-arid grassland, 9145. doi: 10.1080/17429145.2011.564736.
- Belay, T. A., Totland, T. and Moe, S. R. (2013). Woody vegetation dynamics in the rangelands of lower Omo region, southwestern Ethiopia, Journal of Arid Environments. Elsevier Ltd, 89(July 2015), pp. 94–102. doi: 10.1016/j.jaridenv.2012.10.006.
- Belsky, A. J. & Amundson, R. G. (1992). (1992). Effects of trees on understorey vegetation and soils at forest-savanna boundaries in East Africa. In Furley, P. A., Proctor, J. & Ratter, J. A. (ed.) The Nature and Dynamics of Forest-Savanna Boundaries (pp. 353–366), London: Chapman & Hall.
- Buitenwerf, R. et al. (2012). Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver, Global Change Biology, 18(2), pp. 675–684. doi: 10.1111/j.1365-2486.2011.02561.x.
- Camberlin, P. et al. (2007). Determinants of the interannual relationships between remote sensed photosynthetic activity and rainfall in tropical Africa, Remote Sensing of Environment, 106(2), pp. 199–216. doi: 10.1016/j.rse.2006.08.009.
- DeLucia, E. H., George, K. and Hamilton, J. G. (2002). Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide, 2050(Ipcc 1996), pp. 1003–1010.
- Eggemeyer, K. D. et al. (2009). Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland, Tree Physiology, 29(2), pp. 157–169. doi: 10.1093/treephys/tpn019.19203941
- Eldridge, D. J. et al. (2011). Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis, Ecology Letters, 14(7), pp. 709–722. doi: 10.1111/j.1461-0248.2011.01630.x.356396321592276
- Friedl, M., Sulla-Menashe, D. (2019). MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. Retrieved July, 16th, 202 from https://doi.org/10.5067/MODIS/MCD12Q1.006’.
- Gonsamo, A., Ciais, P., Miralles, D.G., Sitch, S., Dorigo, W., Lombardozzi, D., Friedlingstein, P., Nabel, J.E., Goll, D.S., O’Sullivan, M., Arneth, A., Anthoni, P., Jain, A.K., Wiltshire, A., Peylin, P. and Cescatti, A. (2021). Greening drylands despite warming consistent with carbon dioxide fertilization effect. Global Change Biology. Accepted Author Manuscript. https://doi.org/10.1111/gcb.15658.33910268
- Gonsamo, A., Chen, J.M. and Lombardozzi, D. (2016). Global vegetation productivity response to climatic oscillations during the satellite era. Glob Change Biol, 22: 3414-3426. doi:10.1111/gcb.13258.26919189
- Gray, S. B. and Brady, S. M. (2016). Plant developmental responses to climate change, Developmental Biology. Elsevier, 419(1), pp. 64–77. doi: 10.1016/j.ydbio.2016.07.023.27521050
- Guan, K. et al. (2018). Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length, Environmental Research Letters, 13(2). doi: 10.1088/1748-9326/aa9f30.
- Guay, K. C. et al. (2014). Vegetation productivity patterns at high northern latitudes: A multi-sensor satellite data assessment, Global Change Biology, 20(10), pp. 3147–3158. doi: 10.1111/gcb.12647.431285424890614
- Guo Liu, H. L. and Y. Y. C. (2013). Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes, Environmental Research Letters. doi: 10.1088/1748-9326/8/2/025009.
- Harris, I. et al. (2014). Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset, International Journal of Climatology, 34(3), pp. 623–642. doi: 10.1002/joc.3711.
- Hilker, T. et al. (2014). Vegetation dynamics and rainfall sensitivity of the Amazon, Proceedings of the National Academy of Sciences of the United States of America, 111(45), pp. 16041–16046. doi: 10.1073/pnas.1404870111.423453925349419
- Huxman, T. E. et al. (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems, Oecologia, 141(2), pp. 254–268. doi: 10.1007/s00442-004-1682-4.15338414
- IPCC (2012). Climate Change 2014, Special Report of the Intergovernmental Panel on Climate Change. doi: 10.1017/CBO9781139177245.003.
- J. L. Monteith (1977). Climate and the efficiency of crop production in Britain, Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 281(980), pp. 277–294. doi: 10.1098/rstb.1977.0140.
- Kroël-Dulay, G. et al. (2015). Increased sensitivity to climate change in disturbed ecosystems, Nature Communications, 6, pp. 1–7. doi: 10.1038/ncomms7682.25801187
- Leakey, A. D. B. et al. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE, Journal of Experimental Botany, 60(10), pp. 2859–2876. doi: 10.1093/jxb/erp096.19401412
- Liao, C., Clark, P. E. and DeGloria, S. D. (2018). Bush encroachment dynamics and rangeland management implications in southern Ethiopia, Ecology and Evolution, 8(23), pp. 11694–11703. doi: 10.1002/ece3.4621.630371130598767
- Luvuno, L. et al. (2018). Woody encroachment as a social-ecological regime shift, Sustainability (Switzerland), 10(7), pp. 1–16. doi: 10.3390/su10072221.
- McDowell, N. G. and Allen, C. D. (2015). Darcy’s law predicts widespread forest mortality under climate warming, Nature Climate Change, 5(7), pp. 669–672. doi: 10.1038/nclimate2641.
- MEA (2005). Ecosystems and human well-being, Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment. doi: 10.5822/978-1-61091-484-0_1.
- Medvigy, D. et al. (2009). Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2, Journal of Geophysical Research: Biogeosciences, 114(1). doi: 10.1029/2008JG000812.
- Meinzer, F. C. and Zhu, J. (1998). Nitrogen stress reduces the efficiency of the C4 CO2 concentrating system, and therefore quantum yield, in Saccharum (sugarcane) species, Journal of Experimental Botany, 49(324), pp. 1227–1234. doi: 10.1093/jxb/49.324.1227.
- Obermeier, W. et al. (2016). Extreme weather conditions reduce the CO2 fertilization effect in temperate C3 grasslands, Geophysical Research Abstracts, 18, p. 14957.
- Dermody, O., Weltzin, J., Engel, E., Allen, P., Norby, R., (2007). How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem? Plant and Soil 301, 255-266.10.1007/s11104-007-9443-x
- Onofrio, D. D. et al. (2019). Grass and tree cover responses to intra-seasonal rainfall variability vary along a rainfall gradient in African tropical grassy biomes (pp. 1–10). Retrieved December, 9th, 2018 from doi: 10.1038/s41598-019-38933-9.638284830787370
- Otto T. Solbrig, Ernesto Medina, and J. F. S. (1996). Determinants of Tropical Savannas, In Silva, D. T. S. E. M. J. F. (ed.) Biodiversity and Savanna Ecosystelll Processes A Global Perspective (pp. 31–44). Verlag Berlin Heidelberg: Springer. doi: 10.1017/CBO9781107415324.004.
- Pau, S. et al. (2018). Tropical forest temperature thresholds for gross primary productivity, Ecosphere, 9(7), pp. 1–12. doi: 10.1002/ecs2.2311.
- Piao, S. et al. (2014). Evidences for weakning relationship between interannual temperature variability and northern vegetation activity, Nature Communications (pp. 1–7). doi: 10.1038/ncomms6018.25318638
- Piao, S. et al. (2017). Weakening temperature control on the interannual variations of spring carbon uptake across northern lands, Nature Climate Change, 7(5), pp. 359–363. doi: 10.1038/nclimate3277.
- Pellikka, P.K.E., V. Heikinheimo, J. Hietanen, E. Schäfer, M. Siljander, J. Heiskanen (2018). Impact of land cover change on aboveground carbon stocks in Afromontane landscape in Kenya. Applied Geography Volume 94, May 2018, Pages 178-189.10.1016/j.apgeog.2018.03.017
- Norby, R. J., and Zak, D. R. (2011). Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual review of ecology, evolution, and systematics 42, 181-203.10.1146/annurev-ecolsys-102209-144647
- Sala, O. E., Gherardi, L. A. and Peters, D. P. C. (2015). Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions, Climatic Change, 131(2), pp. 213–227. doi: 10.1007/s10584-015-1389-z.
- Schwinning, S. and Sala, O. E. (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems, Oecologia, 141(2), pp. 211–220. doi: 10.1007/s00442-004-1520-8.15034778
- Seddon, A. W. R. et al. (2016). Sensitivity of global terrestrial ecosystems to climate variability, Nature, 531(7593), pp. 229–232. doi: 10.1038/nature16986.26886790
- Wullschleger, S. D., Tschaplinski, T. J., Norby, R. J. (2002). Plant water relations at elevated CO2– implications for water-limited environments. Plant, Cell & Environment 25, 319-331.10.1046/j.1365-3040.2002.00796.x11841673
- Smith, B., Prentice, I. C. and Sykes, M. T. (2001). Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space, Global Ecology and Biogeography, 10(6), pp. 621–637. doi: 10.1046/j.1466-822X.2001.00256.x.
- Smith, M. D. et al. (2017). Assessing community and ecosystem sensitivity to climate change – toward a more comparative approach, Journal of Vegetation Science, 28(2), pp. 235–237. doi: 10.1111/jvs.12524.
- S.A. Archer, E.M. Andersen, K.I. Predick, Susan Schwinning, Robert J. Steidl, and S. R. W. (2017). Woody Plant Encroachment: Causes and Consequences, Rangeland Systems, pp. 263–302. doi: 10.1007/978-3-319-46709-2_8.
- Subbarao, G.V.; Ito, O. & Berry, W. (2005). Crop Radiation Use Efficiency and Photosynthate Formation-Avenues for Genetic Improvement. 2nd edn. Edited by M. Pessarakli. New York.: Taylor and Francis.
- Sühs, R. B., Giehl, E. L. H. and Peroni, N. (2020). Preventing traditional management can cause grassland loss within 30 years in southern Brazil, Scientific Reports, 10(1), pp. 1–9. doi: 10.1038/s41598-020-57564-z.697292831964935
- Taub, D. (2015). Effects of Rising Atmospheric Concentrations of Carbon Dioxide on Plants’, Nature Education Knowledge.
- Traore, A. K. et al. (2014). 1982–2010 Trends of Light Use Efficiency and Inherent Water Use Efficiency in African vegetation: Sensitivity to Climate and Atmospheric CO2 Concentrations, Remote Sensing, (August), pp. 8923–8944. doi: 10.3390/rs6098923.
- Tucker, C. J. et al. (2005). An extended AVHRR 8-kni NDVI dataset compatible with MODIS and SPOT vegetation NDVI data, International Journal of Remote Sensing, 26(20).10.1080/01431160500168686
- Venter, Z. S., Cramer, M. D. and Hawkins, H. J. (2018). Drivers of woody plant encroachment over Africa, Nature Communications. US, 9(1), pp. 1–7. Springer. doi: 10.1038/s41467-018-04616-8.599589029891933
- Vicente-Serrano, S. M. et al. (2013). Response of vegetation to drought time-scales across global land biomes, Proceedings of the National Academy of Sciences of the United States of America, 110(1), pp. 52–57. doi: 10.1073/pnas.1207068110.353825323248309
- Vogel, A., Scherer-Lorenzen, M. and Weigelt, A. (2012). Grassland resistance and resilience after drought depends on management intensity and species richness, PLoS ONE, 7(5). doi: 10.1371/journal.pone.0036992.335396022615865
- Walker, A.P., De Kauwe, M.G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R.F., McMahon, S.M., Medlyn, B.E., Moore, D.J.P., Norby, R.J., Zaehle, S., Anderson-Teixeira, K.J., Battipaglia, G., Brienen, R.J.W., Cabugao, K.G., Cailleret, M., Campbell, E., Canadell, J.G., Ciais, P., Craig, M.E., Ellsworth, D.S., Farquhar, G.D., Fatichi, S., Fisher, J.B., Frank, D.C., Graven, H., Gu, L., Haverd, V., Heilman, K., Heimann, M., Hungate, B.A., Iversen, C.M., Joos, F., Jiang, M., Keenan, T.F., Knauer, J., Körner, C., Leshyk, V.O., Leuzinger, S., Liu, Y., MacBean, N., Malhi, Y., McVicar, T.R., Penuelas, J., Pongratz, J., Powell, A.S., Riutta, T., Sabot, M.E.B., Schleucher, J., Sitch, S., Smith, W.K., Sulman, B., Taylor, B., Terrer, C., Torn, M.S., Treseder, K.K., Trugman, A.T., Trumbore, S.E., van Mantgem, P.J., Voelker, S.L., Whelan, M.E. and Zuidema, P.A. (2021). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol, 229: 2413-2445. https://doi.org/10.1111/nph.16866.32789857
- Workie T.G. and Debela H.J. (2018). Climate change and its effects on vegetation phenology across ecoregions of Ethiopia, Global Ecology and Conservation, Volume 13, 2018, https://doi.org/10.1016/j.gecco.2017.e00366.
- Wu, X. et al. (2017). Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere, Geophysical Research Letters, 44(12), pp. 6173–6181. doi: 10.1002/2017GL073285.
- Yang, Y. et al. (2016). Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests, Journal of Geophysical Research: Biogeosciences, 121(8), pp. 2125–2140. doi: 10.1002/2016JG003475.
- Yuan, X. et al. (2015). Effects of precipitation intensity and temperature on ndvi-based grass change over northern china during the period from 1982 to 2011, Remote Sensing, 7(8), pp. 10164–10183. doi: 10.3390/rs70810164.
- Yusuf, H. et al. (2011). Assessment of woody species encroachment in the grasslands of Nechisar National Park, Ethiopia, African Journal of Ecology, 49(4), pp. 397–409. doi: 10.1111/j.1365-2028.2011.01271.x.
- Zeng, F. W. et al. (2013). Evaluating and quantifying the climate-driven interannual variability in global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) at global scales, Remote Sensing, 5(8), pp. 3918–3950. doi: 10.3390/rs5083918.