Have a personal or library account? Click to login
Unveiling Spatial Variation in Salt Affected Soil of Gautam Buddha Nagar District Based on Remote Sensing Indicators Cover

Unveiling Spatial Variation in Salt Affected Soil of Gautam Buddha Nagar District Based on Remote Sensing Indicators

Open Access
|May 2020

References

  1. Abrol, A.P. and Bhumbla, D. R. (1971). Saline and alkali soils in India- their occurrence and management. World Soil Resources Report. 41-42.
  2. Afework, M. (2009). Analysis and Mapping of Soil Salinity Levels in Metehara Sugarcane Estate Irrigation Farm Using Different Models. Ms.C. Thesis, Addis Ababa University, Ethiopia, Addis Ababa.
  3. Akramkhanov, A., C. Martius, S. J. Park and J. M. H. Hendrickx. (2011). Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma, 163(1-2), 55-62.10.1016/j.geoderma.2011.04.001
  4. Akramkhanov, A.; Vlek, P. (2012). The assessment of spatial distribution of soil salinity risk using neural network. Environ. Monit. Assess., 184, 2475–2485.10.1007/s10661-011-2132-521633795
  5. Allbed A., Kumar L. and Sinha P. (2014). Mapping and Modelling Spatial Variation in Soil Salinity in the Al Hassa Oasis Based on Remote Sensing Indicators and Regression Techniques. Remote Sens, 6, 1137-1157; doi:10.3390/rs6021137.10.3390/rs6021137
  6. Azabdaftari, A., Sunarb, F. (2016). Soil Salinity Mapping using Multitemporal Landsat Data. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (p. 80-122), Volume XLI-B7, 2016, XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic.
  7. Bannari, A. M. Guedona, A. El-Hartib, F. Z. Cherkaouic and A. El-Ghmari, (2008). Characterization of Slightly and Moderately Saline and Sodic Soils in Irrigated Agricultural Land using Simulated Data of Advanced Land Imaging (EO-1) Sensor, Communications in Soil Science and Plant Analysis, Vol. 39 (19), 2795-2811.
  8. Bouaziz, M.; Matschullat, J.; Gloaguen, R. (2011). Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil. ComptesRendusGeosci., 343, 795–803.10.1016/j.crte.2011.09.003
  9. Campbell, J.B. (2002). Introduction to Remote Sensing, Published by Taylor and Francis, London and New York (First Indian Reprint 2003, printed at Chennai Micro Print Pvt. Ltd., Chennai), 621.
  10. Cozzolino D, Moron A. (2003). The potential of near-infrared reflectance spectroscopy to analyse soil chemical and physical characteristics. Journal of Agricultural Sciences 140: 65-71.
  11. Douaik, A.; van Meirvenne, M.; Toth, T.; Serre, M. (2004). Space-time mapping of soil salinity using probabilistic bayesian maximum entropy. Stoch. Environ. Res. Risk Assess., 18, 219–227.10.1007/s00477-004-0177-5
  12. Elnaggar and Noller, J.S., (2009). Application of Remote-Sensing Data and Decision-Tree Analysis to Mapping Salt-Affected Soils over Large Areas, Remote Sensing, 2 (1): 151-165. http://dx.doi.org/10.3390/rs201015110.3390/rs2010151
  13. Fan X., Pedroli, B; Liu G, Liu Q, Liu H and Shu L. (2012). Soil Salinity Development in the Yellow River Delta in Relation to Groundwater Dynamics, Land Degradation & Development, 23(2), 175-189.10.1002/ldr.1071
  14. Farifteh, J., A. Farshad and R. George. (2006). Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma 130(3): 191-206.
  15. Fernandez-Buces, N.; Siebe, C.; Cram, S. and Palacio, J., (2006). Mapping soil salinity using a combined spectral response index for bare soil and vegetation: A case study in the former lake Texcoco, Mexico. J. Arid Environ. 65, 644–667.10.1016/j.jaridenv.2005.08.005
  16. Fernandez-Buces, N.; Siebe, C.; Cram, S.; Palacio, J. (2006). Mapping soil salinity using a combined spectral response index for bare soil and vegetation: A case study in the former lake Texcoco, Mexico. J. Arid Environ., 65, 644–667.10.1016/j.jaridenv.2005.08.005
  17. Field, A.; Miles, J.; Field, Z. (2012). Discovering Statistics Using R; SAGE Publications: London, UK; 992.
  18. Galvao. L.S., Formaggio, A.R., Couto, E.G. & Roberts, D.A. (2008). Relationship between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data. ISPRS Journal of Photogrammetry and Remote Sensing, 63 (2): 259-271.
  19. Girard, M.C. and Girard, C. (2003). Processing of Remote Sensing Data, Translated by N. Venkat Rao, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, Publications, pp. 486
  20. IDNP, (2003). Indo Dutch Network Project: A Methodology for identification of Waterlogging Soil salinity conditions using remote sensing. Central soil Salinity Research Institute, Karnal, India 78 pages.
  21. Jabbar M.T., and Chen. X., (2008). Land Degradation Due to Salinization in Arid and Semi-Arid Regions with the Aid of Geo-Information Techniques, Geo-Spatial Information Science, 11(2), 112-120. http://dx.doi.org/10.1007/s11806-008-0013-z10.1007/s11806-008-0013-z
  22. Janik LJ, Forrester ST, Rawson A. (2009). The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial-least squares regression and neural networks (PLS-NN) analysis. Chemometrics and Intelligent Laboratory Systems 97: 179-188.
  23. Jian-li D, Man-chun W, Tiyip T. (2011). Study on soil salinization information in arid region using remote sensing technique. Agricultural Sciences in China 10: 404-411.
  24. Judkins, G.; Myint, S. (2012). Spatial variation of soil salinity in the Mexicali valley, Mexico: Application of a practical method for agricultural monitoring. Environ. Manag., 50, 478–48..10.1007/s00267-012-9889-3
  25. Kant, Y., Nigam, R.K. and Jayanti, S.C. (1997). Change Detection of Micro Level for Landuse/ Landcover Using Remote Sensing Data, Symposium of Remote Sensing for Natural Resources with Special Emphasis on Infrastructure Development held at NRSA, Hyderabad from November 26-28, 1997. A Joint ISRS, Dehradun and NNRMS, Bangalore Publication (Eds: Rabindran, K.V., Prasad, J., Pande, L.M., Kushwaha, S.P.S. and Saha, S.K.)Remote Sensing and Geographical Information System for Natural resources,pp. 65-74
  26. Khan, N.M., Rastoskuev, V.V., Sato, Y. and Shiozawa, S., (2005). Assessment of Hydrosaline Land Degradation by Using a Simple Approach of Remote Sensing Indicators, Agricultural Water Management, 77(1), 96-109. http://dx.doi.org/10.1016/j.agwat.2004.09.038.10.1016/j.agwat.2004.09.038
  27. Knipling E.B. (1970). Physical and Physiological Bases for the Reflectance of Visible and near Infrared from Vegetation, Remote Sensing of Environment, 1:155-159.10.1016/S0034-4257(70)80021-9
  28. Mehrjardi, R.T.; Mahmoodi, S.H.; Taze, M.; Sahebjalal, E (2008). Accuracy assessment of soil salinity map in Yazd-Ardakan Plain, Central Iran, based on Landsat ETM+ imagery. Am.-Eurasian J.Agric. Environ. Sci., 3, 708–712.
  29. Mehrjardi, R.T.; Minasny, B.; Sarmadian, F.; Malone, B. (2014). Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213, 15–28.10.1016/j.geoderma.2013.07.020
  30. Metternicht, G.; Zinck, A. (2008). Remote Sensing of Soil Salinization: Impact on Land Management; CRC Press: Boca Raton, FL, USA; 377.10.1201/9781420065039
  31. Moriasi, D.; Arnold, J.; van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885–900.10.13031/2013.23153
  32. Norman C.P, Lyle C.W. Heuperman A.F. and Poulton D. (1989). Tragowel Plains – Challenge of the plains: In Tragowel Plains Salinity Management Plan, Soil salinity survey, Tragowel plains subregional working group (pp. 49-89). Melbourne: Victorian, Department of Agriculture.
  33. Patel AD, Bhensdadia H, Pandey AN. (2009). Effect of salinization of soil on growth, water status and general nutrient accumulation in seedlings of Delonisregia (Fabaceae). Acta EclogicaSinica 29: 109-115.
  34. Pérez González M. E., Rodríguez M. P. G., González-Quiñones V. and Jiménez Ballesta, R. (2006). Spatial Variability of Soil Quality in the Surroundings of a Saline Lake Environment, Environmental Geology, 51 (1), 143-149. http://dx.doi.org/10.1007/s00254-006-0317-y10.1007/s00254-006-0317-y
  35. Ramanathan R. (2001). A note on the use of the analytic hierarchy process for environmental impact assessment, Journal of EnvironmentalManagement, 63, 27-35.10.1006/jema.2001.0455
  36. Richards L. (1954). Diagnosis and Improvement of Saline and alkali Soils, Soil Science, 78 (2), 154.Richards, L. Determination of the Properties of Saline and Alkali Soils. In Diagnosis and Improvement of Saline and Alkali Soils, Agriculture Handbook No. 60; US Regional SalinityLaboratory: Riverside, CA, USA, 1954; pp. 7–33.
  37. Saaty T.L. (1977). A scaling method for priorities in hierarchical structures, Journal ofMathematical Psychology, 15, 234–281.10.1016/0022-2496(77)90033-5
  38. Saaty T.L. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill International Book Company,New York.
  39. Saaty T.L. (2000). Fundamentals of decision making and priority theory with the Analytic Hierarchy Process, RWS Publications, Pittsburg.10.1007/978-94-015-9799-9_2
  40. Selch, D. (2012). Comparing salinity models in Whitewater Bay using remote sensing, Florida Atlantic University.
  41. Shamsi, F.R.S.; Sanaz, Z.; Abtahi, A.S. (2013). Soil salinity characteristics using moderate resolution imaging spectroradiometer (MODIS) images and statistical analysis. Arch. Agron. Soil Sci.59, 471–489.10.1080/03650340.2011.646996
  42. Shrestha, R. (2006). Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in northeast Thailand. Land Degrad. Dev.17, 677–689.10.1002/ldr.752
  43. Somvanshi S, Kunwar P., Singh N. B, Shukla S.P and Pathak V. (2012). Integrated Remote Sensing and GIS for Water Quality Analysis of Gomti River, Uttar Pradesh, International Journal of Environmental Sciences, 3 (1): 62-74.
  44. Somvanshi S.S, Kunwar P, Tomar S, Singh M, (2017). Comparative Statistical Analysis of the Quality of Image Enhancement Techniques, International Journal of Image and Data Fusion. DOI – 10.1080/19479832.2017.1355336
  45. Tajgardan, T.; Shataee, S.; Ayoubi, S. (2007). In Spatial Prediction of Soil Salinity in the Arid Zones Using ASTER Data, Case study: North of Ag Ghala, Golestan Province, Iran. In Proceedings of Asian Conference on Remote Sensing (ACRS) (pp. 5-10), Kuala Lumpur, Malaysia, 12–16 November 2007.
DOI: https://doi.org/10.2478/jlecol-2020-0005 | Journal eISSN: 1805-4196 | Journal ISSN: 1803-2427
Language: English
Page range: 61 - 84
Submitted on: Jan 9, 2020
Accepted on: Apr 2, 2020
Published on: May 26, 2020
Published by: Czech Society for Landscape Ecology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Shivangi S. Somvanshi, Phool Kunwar, Walter Timo De Vries, Maya Kumari, Syed Zubair, published by Czech Society for Landscape Ecology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.