Have a personal or library account? Click to login
Use of Spectral Indices to Identify the Changes in the Vegetation Community Over Time After Restoring a Palustrine Wetland: A Case Study of Spencer Island Regional Park, Everett, WA.
Adam, E., Onisimo, M., & Rugege, D. (2010). Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology Management, 18, 281-296. doi:10.1007/s11273-009-9169-z.10.1007/s11273-009-9169-z
Biondini, M., & Kandus, P. (2006). Transition matrix analysis of land-cover change in the accretion area of the Lower Delta of the Paraná River (Argentina) reveals two succession pathways. Wetlands, 26(4), 981–991. https://doi-org.offcampus.lib.washington.edu/10.1672/0277-5212(2006)26[981:TMAOLC]2.0.CO;2.10.1672/0277-5212(2006)26[981:TMAOLC]2.0.CO;2
Bohnen, J., & Galatowitsch, S. M. (2001). Biomonitoring and Management of North American Freshwater Wetlands. (R. Rader, D. Batzer, & S. Wissinger, Editoři) New York, NY, U.S.: John Wiley and Sons.
Bork, S., Pypker, T. G., Maclean, A. L., & Hribljan, J. A. (2013). A Case Study in Large-scale Wetland Restoration at Seney National Wildlife Refuge, Upper Michigan, U.S.A. The American Midland Naturalist, 169(2), 286-302. doi:10.1674/0003-0031-169.2.286.10.1674/0003-0031-169.2.286
Boyden, J., Joyce, K. E., Boggs, G., & Wurm, P. (2013). Object-based mapping of native vegetation and para grass (Urochloa mutica) on a monsoonal wetland of Kakadu NP using a Landsat 5 TM dry-season time series. Journal of Spatial Science, 58(1), 53-77. doi:10.1080/14498596.2012.759086.10.1080/14498596.2012.759086
Cordell, J. R., Higgens, H., Tanner, C., & Aitkin, J. K. (1998). Biological Status of Fish and Invertebrate Assemblages in a Breaked-Dike Wetland Site at Spencer Island, Washington. Seattle: Seattle Fisheries Research Institute.
Cowardin, L. M., Carter, V., Golet, F. C., & LaRoe, E. T. (1979). Classification of wetlands and Deepwater habitats of the United States. U.S. Fish and Wildlife Service, Department of Interior. Washington, D.C.: U.S. Fish and Wildlife Service.10.5962/bhl.title.4108
De Roeck, E. R., Verhoest, N. E., Miya, M. H., Lievens, H., Batelaan, O., Thomas, A., a další. (2008). Remote Sensing and Wetland Ecology: A South African Case Study. Sensors, 8(5), 3542–3556.doi: 10.3390/s8053542.10.3390/s8053542
Dennison, W. C., Orth, R. J., Moore, K. A., Stevenson, J. C., Cart, V., Kollar, S., a další. (1993). Assessing water quality with submerged aquatic vegetation. Bioscience, 43, 86-94. doi:10.2307/1311969.10.2307/1311969
Dronova, I., Gong, P., & Wang, L. (2011). Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China. Remote Sensing of Environment, 115(12), 3220-3236. doi:10.1016/j.rse.2011.07.006.10.1016/j.rse.2011.07.006
Dronova, I., Gong, P., Wang, L., & Zhong, L. (2015). Mapping dynamic cover types in a large seasonally flooded wetland using extended principal component analysis and object-based classification. Remote Sensing of Environment, 158, 193-206. doi:10.1016/j.rse.2014.10.027.10.1016/j.rse.2014.10.027
Galatowitsch, S. M., Budelsky, R., & Yetka, L. (1999). An International Perspective on Wetland Rehabilitation. (W. J. Streever, Editor) Springer, Dordrecht.
He, C., Zhang, Q., & Li, Y. (2005). Zoning grassland protection area using remote sensing and cellular automata modeling—a case study in Xilingol steppe grassland in northern China. Journal of Arid Environments, 63, 814–826. doi:10.1109/IGARSS.2004.1369904.10.1109/IGARSS.2004.1369904
Hwang, Y. S., & Um, J. S. (2015). Monitoring the Desiccation of Inland Wetland by Combining MNDWI and NDVI: A Case Study of Upo Wetland in South Korea. Journal of korea Spatial Information Society, 23(6), 31–41. doi:10.12672/ksis.2015.23.6.031.10.12672/ksis.2015.23.6.031
Lane, C. R., Liu, H., Autrey, B. C., Anenkhonov, O. A., Chepinoga, V. V., & Wu, Q. (2014). Improved Wetland Classification Using Eight-Band High Resolution Satellite Imagery and a Hybrid Approach. Remote sensing, 6, 12187-12216. doi:10.3390/rs61212187.10.3390/rs61212187
Lee, T., & Yeh, H. (2009). Applying remote sensing techniques to monitor shifting wetland vegetation: A case study of Danshui River estuary mangrove communities, Taiwan. Ecological Engineering, 35(4), 487-496. doi: 10.1016/j.ecoleng.2008.01.007.10.1016/j.ecoleng.2008.01.007
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432. doi:10.1080/01431169608948714.10.1080/01431169608948714
Meli, P., Rey Benayas, J., Balvanera, P., & Martínez Ramos, M. (2014). Restoration enhances wetland biodiversity and ecosystem service supply, but results are context-dependent: a meta-analysis. PloS one, 9(4), e93507. doi:10.1371/journal.pone.0093507.10.1371/journal.pone.0093507399055124743348
Neubauer, S. C., & Craft, C. B. (2009). Global change and Tidal Freshwater Wetlands: Scenarios and impacts. V A. Barendregt, D. Whigham, A. Baldwin, & D. W. Aat Barendregt (Editor), Tidal Freshwater Wetlands (str. 320). Backhuys Publishers & Margraf Publishers.
O’Neil, G., Goodall, J., & Watson, L. (2018). Evaluating the potential for site-specific modification of LiDAR DEM derivatives to improve environmental planning-scale wetland identification using Random Forest classification. Journal of Hydrology, 559, 192-208. doi:10.1016/j.jhydrol.2018.02.009.10.1016/j.jhydrol.2018.02.009
Tu, M., Hurd, C., & Randall, J. M. (2001). Weed Control Methods Handbook: Tools & Techniques for Use in Natural Areas. The Nature Conservancy, Wildland Invasive Species Team. http://tncweeds.ucdavis.edu.
Williams, D., & Lyon, J. (1997). Historical aerial photographs and a geographic information system (GIS) to determine effects of long-term water level fluctuations on wetlands along the St. Marys River, Michigan, USA. Aquatic Botany, 58(3-4), 363-378. doi:1016/S0304-3770(97)00046-6.10.1016/S0304-3770(97)00046-6
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033. doi:10.1080/0143116060058917910.1080/01431160600589179