References
- 1. World Health Organisation, Cardiovascular disease (CVDs), 2016. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/#.
- 2. Roffi M, Patrono C, Collet JP, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the management of acute coronary syndromes in patients presenting without persistent st segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:267-315.10.1093/eurheartj/ehv32026320110
- 3. Nichols M, Townsend N, Scarborough P, et al. Cardiovascular disease in Europe 2014:epidemiological update. Eur Heart J. 2014;35:2950-2959.10.1093/eurheartj/ehu29925139896
- 4. Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol. 2015;65:846-855.
- 5. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13-18.10.1016/j.jacc.2005.10.06516631505
- 6. Choy SY, Mintz GS. What have we learned about plaque rupture in acute coronary syndromes? Curr Cardiol Rep. 2010;12:338-343.
- 7. Andreou I, Antoniadis AP, Shishido K, et al. How do we prevent the vulnerable atherosclerotic plaque from rupturing? Insights from in vivo assessments of plaque, vascular remodeling, and local endothelial shear stress. J Cardiovasc Pharmacol Ther. 2015;20:261-275.10.1177/107424841455500525336461
- 8. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852-1866.10.1161/CIRCRESAHA.114.30272124902970
- 9. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2889-2934.10.1016/j.jacc.2013.11.00224239923
- 10. Tarkin JM, Dweck MR, Evans NR, et al. Imaging atherosclerosis. Circ Res. 2016;118:750-769.10.1161/CIRCRESAHA.115.306247475646826892971
- 11. Moss AJ, Williams MC, Newby DE, Nicol ED. The updated nice guidelines: cardiac ct as the first-line test for coronary artery disease. Curr Cardiovasc Imaging Rep. 2017;10:15.10.1007/s12410-017-9412-6536820528446943
- 12. Aeshita Dwivedi, Subhi J. Al’Aref, Fay Y. Lin, James K. Min. Evaluation of Atherosclerotic Plaque in Non-invasive Coronary Imaging. Korean Circ J. 2018;48:124-13310.4070/kcj.2017.0392586100329441745
- 13. Fernando K, Arzu C and Suhny A. Future Directions in Coronary CT Angiography: CT-Fractional Flow Reserve, Plaque Vulnerability, and Quantitative Plaque Assessment. Korean Circ J. 2020;50:185-202.10.4070/kcj.2019.0315704396231960635
- 14. Gössl M, Versari D, Hildebrandt Het al. Vulnerable Plaque: Detection and Management. Med Clin North Am. 2007;91:573-601.10.1016/j.mcna.2007.03.00417640537
- 15. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262-1275.10.1161/01.ATV.20.5.126210807742
- 16. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664-1672.10.1161/01.CIR.0000087480.94275.9714530185
- 17. Braunwald E. Progress in the noninvasive detection of highrisk coronary plaques. J Am Coll Cardiol. 2015;66:347-349.10.1016/j.jacc.2015.05.06726205590
- 18. Raggi P, Pontone G, Andreini D. Role of new imaging modalities in pursuit of the vulnerable plaque and the vulnerable patient. Int J Cardiol. 2018;250:278-283.10.1016/j.ijcard.2017.10.04629102056
- 19. Thomsen C, Abdulla J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: A systematic review and metaanalysis. Eur Heart J Cardiovasc Imaging. 2016;17:120-129.10.1093/ehjci/jev325488289626690951
- 20. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319-326.10.1016/j.jacc.2007.03.04417659199
- 21. Motoyama S, SaraiM, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49-57.10.1016/j.jacc.2009.02.06819555840
- 22. Motoyama S, Ito H, SaraiM, et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow- up. J Am Coll Cardiol. 2015;66:337-346.10.1016/j.jacc.2015.05.06926205589
- 23. Ferencik M, Mayrhofer T, Bittner DO, et al. Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the PROMISE randomized clinical trial. JAMA Cardiol. 2018;3:144-152.10.1001/jamacardio.2017.4973583860129322167
- 24. Douglas PS, Hoffmann U, Patel MR, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291-1300.10.1056/NEJMoa1415516447377325773919
- 25. Williams MC, Moss AJ, Dweck M, et al. Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART Study. J Am Coll Cardiol. 2019;73:291-301.10.1016/j.jacc.2018.10.066634289330678759
- 26. Newby DE, Adamson PD, Berry C, et al. SCOT-HEART investigators. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med. 2018;379:924-933.10.1056/NEJMoa180597130145934
- 27. Williams MC, Kwiecinski J, Doris M, McElhinney P, D’Souza MS, et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction. Results from the Multicenter SCOT-HEART trial. Circulation. 2020;141:1352-1462.
- 28. Otsuka K, Fukuda S, Tanaka A, et al. Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. J Am Coll Cardiol Imaging. 2013;6:448-457.10.1016/j.jcmg.2012.09.01623498679
- 29. Maurovich-Horvat P, Schlett CL, Alkadhi H, et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging. 2012;5:1243-1252.10.1016/j.jcmg.2012.03.01923236975
- 30. Vancraeynest D, Pasquet A, Roelants V, et al. Imaging the vulnerable plaque. J Am Coll Cardiol. 2011;57:1961-1979.10.1016/j.jacc.2011.02.01821565634
- 31. Hong MK, Mintz GS, Lee CW, et al. The site of plaque rupture in native coronary arteries: a three-vessel intravascular ultrasound analysis. J Am Coll Cardiol. 2005;46:261-265.10.1016/j.jacc.2005.03.06716022952
- 32. Brutkiewicz A, Kruk M, Maurovich-Horvat P, et al. The natural history of napkin-ring sign by coronary computed tomography angiography. Adv Interv Cardiol. 2019;3:314-320.10.5114/aic.2019.87886677719231592255
- 33. Al’Aref SJ, Maliakal G, Singh G, et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the confirm registry. Eur Heart J. 2020;41:359-367.10.1093/eurheartj/ehz565784994431513271
- 34. Al-Mallah MH, Sakr S. Artificial intelligence for plaque characterization: a scientific exercise looking for a clinical application. Atherosclerosis. 2019;288:158-159.10.1016/j.atherosclerosis.2019.06.91431280876
- 35. Kolossvary M, Karady J, Szilveszter B, et al. Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign. Circ Cardiovasc Imaging. 2017;10:e006843.10.1161/CIRCIMAGING.117.006843
- 36. Kolossváry M, Park J, Bang JI, et al. Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2019;20:1250-1258.10.1093/ehjci/jez033
- 37. Kolossváry M, Kellermayer M, Merkely B, Maurovich-Horvat P. Cardiac computed tomography radiomics: a comprehensive review on radiomic techniques. J Thorac Imaging. 2018;33:26-34.10.1097/RTI.0000000000000268
- 38. Oikonomou EK, Williams MC, Kotanidis CP, et al. A novel ct-based radiotranscriptomic signature of perivascular fat improves cardiac risk prediction. Eur Heart J. 2019;40:3529-3543.10.1093/eurheartj/ehz592
- 39. Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS): A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478-1492.10.1016/S0735-1097(01)01175-5
- 40. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary Plaque Classification with Intravascular Ultrasound Radiofrequency Data Analysis. Circulation. 2002;106:2200-2206.10.1161/01.CIR.0000035654.18341.5E
- 41. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262-1275.10.1161/01.ATV.20.5.1262
- 42. Stone GW, Maehara A, Lansky AJ, et al. For the PROSPECT Investigators. Association between IVUS of coronary atherosclerosis. N Eng J Med. 2011;364:226-235.10.1056/NEJMoa100235821247313
- 43. Calvert PA, Obaid DR, O’Sullivan M, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. J Am Coll Cardiol Img. 2011;4:894-901.10.1016/j.jcmg.2011.05.00521835382
- 44. Schuurman AS, Vroegindewey MM, Kardys I, et al. Prognostic value of intravascular ultrasound in patients with coronary artery disease. J Am Coll Cardiol. 2018;72:2003-2011.10.1016/j.jacc.2018.08.214030336823
- 45. Schuurman AS, Vroegindewey M, Kardys I, et al. Near-infrared spectroscopy-derived lipid core burden index predicts adverse cardiovascular outcome in patients with coronary artery disease during long-term follow-up. Eur Heart J. 2018;39:295-302.10.1093/eurheartj/ehx247
- 46. Zhao Z, Witzenbichler B, Mintz GS, et al. Dynamic nature of nonculprit coronary artery lesion morphology in STEMI: a serial IVUS analysis from the HORIZONS-AMI trial. J Am Coll Cardiol Img. 2013;6:86-95.10.1016/j.jcmg.2012.08.010
- 47. Kubo T, Maehara A, Mintz GS, et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J Am Coll Cardiol. 2010;55:1590-1597.10.1016/j.jacc.2009.07.078
- 48. Gregg W, Gary S, Renu V. Vulnerable Plaques, Vulnerable Patients, and Intravascular Imaging. J Am Coll Cardiol. 2018;72:2022-2026.10.1016/j.jacc.2018.09.010
- 49. Maehara A, Mintz GS, Stone GW. OCT versus IVUS: accuracy versus clinical utility. JACC Cardiovasc Imag. 2013;6:1105-1107.10.1016/j.jcmg.2013.05.016
- 50. Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59:1058-1072.10.1016/j.jacc.2011.09.079
- 51. Kini AS, Vengrenyuk Y, Yoshimura T, et al. Fibrous cap thickness by optical coherence tomography in vivo. J Am Coll Cardiol. 2017;69:644-657.10.1016/j.jacc.2016.10.028
- 52. Kume T, Akasaka T, Kawamoto T, et al. Measurement of the thickness of the fbrous cap by optical coherence tomography. Am Heart J. 2006;152:e1-755.e4.10.1016/j.ahj.2006.06.030
- 53. Toutouzas K, Karanasos A, Tousoulis D. Optical coherence tomography for the detection of the vulnerable plaque. Eur Cardiol Rev. 2016;11:90.10.15420/ecr.2016:29:2
- 54. Hattori K, Ozaki Y, Ismail TF, et al. Impact of statin therapy on plaque characteristics as assessed by serial OCT grayscale and integrated backscatter-IVUS. J Am Coll Cardiol Img. 2012;5:169-177.10.1016/j.jcmg.2011.11.01222340823
- 55. Francesco F, Filippo C, Tomoyo S, et al. Healed Culprit Plaques in Patients With Acute Coronary Syndromes. J Am Coll Cardiol. 2019;73:2253-2263.10.1016/j.jacc.2018.10.09331072568
- 56. Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol. 2014;11:379-389.10.1038/nrcardio.2014.6224776706
- 57. Taglieri N, Ghetti G, Bruno AG, et. al. Optical coherence tomography assessment of macrophage accumulation in non-ST-segment elevation acute coronary syndromes. J Cardiovasc Med. 2020;21:860-865.10.2459/JCM.000000000000101533017123
- 58. Taglieri N, Nanni C, Ghetti G, et al. Relation between thoracic aortic inflammation and features of plaque vulnerability in the coronary tree in patients with non-ST-segment elevation acute coronary syndrome undergoing percutaneous coronary intervention: an FDG-positron emission tomography and optical coherence tomography study. Eur J Nucl Med Mol Imaging. 2017;44:1878-1887.10.1007/s00259-017-3747-828584972
- 59. Räber L, Koskina KC, Yamaji K, et al. Changes in coronary plaque composition in patients with acute myocardial infarction treated with highintensity statin therapy (IBIS-4): a serial optical Coherence Tomography Study. JACC Cardiovascular Imaging. 2019;12:1518-1528.10.1016/j.jcmg.2018.08.02430553686
- 60. Benedek T, Mester A, Benedek A, Rat N, Opincariu D, Chițu M. Assessment of Coronary Plaque Vulnerability in Acute Coronary Syndromes using Optical Coherence Tomography and Intravascular Ultrasound. A Systematic Review. Journal of Cardiovascular Emergencies. 2016;2:173-184.10.1515/jce-2016-0028