Have a personal or library account? Click to login
Cardiovascular Imaging Techniques for Detection of Vulnerable Plaques Cover

Cardiovascular Imaging Techniques for Detection of Vulnerable Plaques

Open Access
|Mar 2021

References

  1. 1. World Health Organisation, Cardiovascular disease (CVDs), 2016. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/#.
  2. 2. Roffi M, Patrono C, Collet JP, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the management of acute coronary syndromes in patients presenting without persistent st segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:267-315.10.1093/eurheartj/ehv32026320110
  3. 3. Nichols M, Townsend N, Scarborough P, et al. Cardiovascular disease in Europe 2014:epidemiological update. Eur Heart J. 2014;35:2950-2959.10.1093/eurheartj/ehu29925139896
  4. 4. Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol. 2015;65:846-855.
  5. 5. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13-18.10.1016/j.jacc.2005.10.06516631505
  6. 6. Choy SY, Mintz GS. What have we learned about plaque rupture in acute coronary syndromes? Curr Cardiol Rep. 2010;12:338-343.
  7. 7. Andreou I, Antoniadis AP, Shishido K, et al. How do we prevent the vulnerable atherosclerotic plaque from rupturing? Insights from in vivo assessments of plaque, vascular remodeling, and local endothelial shear stress. J Cardiovasc Pharmacol Ther. 2015;20:261-275.10.1177/107424841455500525336461
  8. 8. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852-1866.10.1161/CIRCRESAHA.114.30272124902970
  9. 9. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2889-2934.10.1016/j.jacc.2013.11.00224239923
  10. 10. Tarkin JM, Dweck MR, Evans NR, et al. Imaging atherosclerosis. Circ Res. 2016;118:750-769.10.1161/CIRCRESAHA.115.306247475646826892971
  11. 11. Moss AJ, Williams MC, Newby DE, Nicol ED. The updated nice guidelines: cardiac ct as the first-line test for coronary artery disease. Curr Cardiovasc Imaging Rep. 2017;10:15.10.1007/s12410-017-9412-6536820528446943
  12. 12. Aeshita Dwivedi, Subhi J. Al’Aref, Fay Y. Lin, James K. Min. Evaluation of Atherosclerotic Plaque in Non-invasive Coronary Imaging. Korean Circ J. 2018;48:124-13310.4070/kcj.2017.0392586100329441745
  13. 13. Fernando K, Arzu C and Suhny A. Future Directions in Coronary CT Angiography: CT-Fractional Flow Reserve, Plaque Vulnerability, and Quantitative Plaque Assessment. Korean Circ J. 2020;50:185-202.10.4070/kcj.2019.0315704396231960635
  14. 14. Gössl M, Versari D, Hildebrandt Het al. Vulnerable Plaque: Detection and Management. Med Clin North Am. 2007;91:573-601.10.1016/j.mcna.2007.03.00417640537
  15. 15. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262-1275.10.1161/01.ATV.20.5.126210807742
  16. 16. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664-1672.10.1161/01.CIR.0000087480.94275.9714530185
  17. 17. Braunwald E. Progress in the noninvasive detection of highrisk coronary plaques. J Am Coll Cardiol. 2015;66:347-349.10.1016/j.jacc.2015.05.06726205590
  18. 18. Raggi P, Pontone G, Andreini D. Role of new imaging modalities in pursuit of the vulnerable plaque and the vulnerable patient. Int J Cardiol. 2018;250:278-283.10.1016/j.ijcard.2017.10.04629102056
  19. 19. Thomsen C, Abdulla J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: A systematic review and metaanalysis. Eur Heart J Cardiovasc Imaging. 2016;17:120-129.10.1093/ehjci/jev325488289626690951
  20. 20. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319-326.10.1016/j.jacc.2007.03.04417659199
  21. 21. Motoyama S, SaraiM, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49-57.10.1016/j.jacc.2009.02.06819555840
  22. 22. Motoyama S, Ito H, SaraiM, et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow- up. J Am Coll Cardiol. 2015;66:337-346.10.1016/j.jacc.2015.05.06926205589
  23. 23. Ferencik M, Mayrhofer T, Bittner DO, et al. Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the PROMISE randomized clinical trial. JAMA Cardiol. 2018;3:144-152.10.1001/jamacardio.2017.4973583860129322167
  24. 24. Douglas PS, Hoffmann U, Patel MR, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291-1300.10.1056/NEJMoa1415516447377325773919
  25. 25. Williams MC, Moss AJ, Dweck M, et al. Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART Study. J Am Coll Cardiol. 2019;73:291-301.10.1016/j.jacc.2018.10.066634289330678759
  26. 26. Newby DE, Adamson PD, Berry C, et al. SCOT-HEART investigators. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med. 2018;379:924-933.10.1056/NEJMoa180597130145934
  27. 27. Williams MC, Kwiecinski J, Doris M, McElhinney P, D’Souza MS, et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction. Results from the Multicenter SCOT-HEART trial. Circulation. 2020;141:1352-1462.
  28. 28. Otsuka K, Fukuda S, Tanaka A, et al. Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. J Am Coll Cardiol Imaging. 2013;6:448-457.10.1016/j.jcmg.2012.09.01623498679
  29. 29. Maurovich-Horvat P, Schlett CL, Alkadhi H, et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging. 2012;5:1243-1252.10.1016/j.jcmg.2012.03.01923236975
  30. 30. Vancraeynest D, Pasquet A, Roelants V, et al. Imaging the vulnerable plaque. J Am Coll Cardiol. 2011;57:1961-1979.10.1016/j.jacc.2011.02.01821565634
  31. 31. Hong MK, Mintz GS, Lee CW, et al. The site of plaque rupture in native coronary arteries: a three-vessel intravascular ultrasound analysis. J Am Coll Cardiol. 2005;46:261-265.10.1016/j.jacc.2005.03.06716022952
  32. 32. Brutkiewicz A, Kruk M, Maurovich-Horvat P, et al. The natural history of napkin-ring sign by coronary computed tomography angiography. Adv Interv Cardiol. 2019;3:314-320.10.5114/aic.2019.87886677719231592255
  33. 33. Al’Aref SJ, Maliakal G, Singh G, et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the confirm registry. Eur Heart J. 2020;41:359-367.10.1093/eurheartj/ehz565784994431513271
  34. 34. Al-Mallah MH, Sakr S. Artificial intelligence for plaque characterization: a scientific exercise looking for a clinical application. Atherosclerosis. 2019;288:158-159.10.1016/j.atherosclerosis.2019.06.91431280876
  35. 35. Kolossvary M, Karady J, Szilveszter B, et al. Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign. Circ Cardiovasc Imaging. 2017;10:e006843.10.1161/CIRCIMAGING.117.006843
  36. 36. Kolossváry M, Park J, Bang JI, et al. Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2019;20:1250-1258.10.1093/ehjci/jez033
  37. 37. Kolossváry M, Kellermayer M, Merkely B, Maurovich-Horvat P. Cardiac computed tomography radiomics: a comprehensive review on radiomic techniques. J Thorac Imaging. 2018;33:26-34.10.1097/RTI.0000000000000268
  38. 38. Oikonomou EK, Williams MC, Kotanidis CP, et al. A novel ct-based radiotranscriptomic signature of perivascular fat improves cardiac risk prediction. Eur Heart J. 2019;40:3529-3543.10.1093/eurheartj/ehz592
  39. 39. Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS): A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478-1492.10.1016/S0735-1097(01)01175-5
  40. 40. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary Plaque Classification with Intravascular Ultrasound Radiofrequency Data Analysis. Circulation. 2002;106:2200-2206.10.1161/01.CIR.0000035654.18341.5E
  41. 41. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262-1275.10.1161/01.ATV.20.5.1262
  42. 42. Stone GW, Maehara A, Lansky AJ, et al. For the PROSPECT Investigators. Association between IVUS of coronary atherosclerosis. N Eng J Med. 2011;364:226-235.10.1056/NEJMoa100235821247313
  43. 43. Calvert PA, Obaid DR, O’Sullivan M, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. J Am Coll Cardiol Img. 2011;4:894-901.10.1016/j.jcmg.2011.05.00521835382
  44. 44. Schuurman AS, Vroegindewey MM, Kardys I, et al. Prognostic value of intravascular ultrasound in patients with coronary artery disease. J Am Coll Cardiol. 2018;72:2003-2011.10.1016/j.jacc.2018.08.214030336823
  45. 45. Schuurman AS, Vroegindewey M, Kardys I, et al. Near-infrared spectroscopy-derived lipid core burden index predicts adverse cardiovascular outcome in patients with coronary artery disease during long-term follow-up. Eur Heart J. 2018;39:295-302.10.1093/eurheartj/ehx247
  46. 46. Zhao Z, Witzenbichler B, Mintz GS, et al. Dynamic nature of nonculprit coronary artery lesion morphology in STEMI: a serial IVUS analysis from the HORIZONS-AMI trial. J Am Coll Cardiol Img. 2013;6:86-95.10.1016/j.jcmg.2012.08.010
  47. 47. Kubo T, Maehara A, Mintz GS, et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J Am Coll Cardiol. 2010;55:1590-1597.10.1016/j.jacc.2009.07.078
  48. 48. Gregg W, Gary S, Renu V. Vulnerable Plaques, Vulnerable Patients, and Intravascular Imaging. J Am Coll Cardiol. 2018;72:2022-2026.10.1016/j.jacc.2018.09.010
  49. 49. Maehara A, Mintz GS, Stone GW. OCT versus IVUS: accuracy versus clinical utility. JACC Cardiovasc Imag. 2013;6:1105-1107.10.1016/j.jcmg.2013.05.016
  50. 50. Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59:1058-1072.10.1016/j.jacc.2011.09.079
  51. 51. Kini AS, Vengrenyuk Y, Yoshimura T, et al. Fibrous cap thickness by optical coherence tomography in vivo. J Am Coll Cardiol. 2017;69:644-657.10.1016/j.jacc.2016.10.028
  52. 52. Kume T, Akasaka T, Kawamoto T, et al. Measurement of the thickness of the fbrous cap by optical coherence tomography. Am Heart J. 2006;152:e1-755.e4.10.1016/j.ahj.2006.06.030
  53. 53. Toutouzas K, Karanasos A, Tousoulis D. Optical coherence tomography for the detection of the vulnerable plaque. Eur Cardiol Rev. 2016;11:90.10.15420/ecr.2016:29:2
  54. 54. Hattori K, Ozaki Y, Ismail TF, et al. Impact of statin therapy on plaque characteristics as assessed by serial OCT grayscale and integrated backscatter-IVUS. J Am Coll Cardiol Img. 2012;5:169-177.10.1016/j.jcmg.2011.11.01222340823
  55. 55. Francesco F, Filippo C, Tomoyo S, et al. Healed Culprit Plaques in Patients With Acute Coronary Syndromes. J Am Coll Cardiol. 2019;73:2253-2263.10.1016/j.jacc.2018.10.09331072568
  56. 56. Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol. 2014;11:379-389.10.1038/nrcardio.2014.6224776706
  57. 57. Taglieri N, Ghetti G, Bruno AG, et. al. Optical coherence tomography assessment of macrophage accumulation in non-ST-segment elevation acute coronary syndromes. J Cardiovasc Med. 2020;21:860-865.10.2459/JCM.000000000000101533017123
  58. 58. Taglieri N, Nanni C, Ghetti G, et al. Relation between thoracic aortic inflammation and features of plaque vulnerability in the coronary tree in patients with non-ST-segment elevation acute coronary syndrome undergoing percutaneous coronary intervention: an FDG-positron emission tomography and optical coherence tomography study. Eur J Nucl Med Mol Imaging. 2017;44:1878-1887.10.1007/s00259-017-3747-828584972
  59. 59. Räber L, Koskina KC, Yamaji K, et al. Changes in coronary plaque composition in patients with acute myocardial infarction treated with highintensity statin therapy (IBIS-4): a serial optical Coherence Tomography Study. JACC Cardiovascular Imaging. 2019;12:1518-1528.10.1016/j.jcmg.2018.08.02430553686
  60. 60. Benedek T, Mester A, Benedek A, Rat N, Opincariu D, Chițu M. Assessment of Coronary Plaque Vulnerability in Acute Coronary Syndromes using Optical Coherence Tomography and Intravascular Ultrasound. A Systematic Review. Journal of Cardiovascular Emergencies. 2016;2:173-184.10.1515/jce-2016-0028
DOI: https://doi.org/10.2478/jim-2021-0008 | Journal eISSN: 2501-8132 | Journal ISSN: 2501-5974
Language: English
Page range: 21 - 26
Submitted on: Sep 28, 2020
|
Accepted on: Dec 26, 2020
|
Published on: Mar 17, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Emese Márton, Daniel Cernica, Cosmin Țolescu, Andrada Lupșan, Monica Chițu, Imre Benedek, published by Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.