Have a personal or library account? Click to login
The Napkin-Ring Sign – the Story Behind Invasive Coronary Angiography Cover

The Napkin-Ring Sign – the Story Behind Invasive Coronary Angiography

Open Access
|Mar 2021

References

  1. 1. Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016;37:3232-3245.10.1093/eurheartj/ehw33427523477
  2. 2. Mushenkova NV, Summerhill VI, Zhang D, Romanenko EB, Grechko AV, Orekhov AN. Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. Int J Mol Sci. 2020;21:2992.10.3390/ijms21082992721600132340284
  3. 3. Eikendal ALM, Groenewegen KA, Bots ML, Peters SAE, Uiterwaal CSPM, den Ruijter HM. Relation Between Adolescent Cardiovascular Risk Factors and Carotid Intima-Media Echogenicity in Healthy Young Adults: The Atherosclerosis Risk in Young Adults (ARYA) Study. J Am Heart Assoc. 2016;5: e002941.10.1161/JAHA.115.002941488917427172911
  4. 4. Libby P. Mechanisms of Acute Coronary Syndromes and Their Implications for Therapy. N Engl J Med. 2013;368:2004-2013.10.1056/NEJMra121606323697515
  5. 5. The SCOT-HEART Investigators. Coronary CT Angiography and 5-Year Risk of Myocardial Infarction. N Engl J Med. 2018;379:924-933.10.1056/NEJMoa180597130145934
  6. 6. Glaser R, Selzer F, Faxon DP, et al. Clinical Progression of Incidental, Asymptomatic Lesions Discovered During Culprit Vessel Coronary Intervention. Circulation. 2005;111:143-149.10.1161/01.CIR.0000150335.01285.1215623544
  7. 7. Stone GW, Maehara A, Lansky AJ, et al. A Prospective Natural-History Study of Coronary Atherosclerosis. N Engl J Med. 2011;364:226-235.10.1056/NEJMoa100235821247313
  8. 8. Pugliese G, Iacobini C, Fantauzzi CB, Menini S. The dark and bright side of atherosclerotic calcification. Atherosclerosis. 2015;238:220-230.10.1016/j.atherosclerosis.2014.12.01125528431
  9. 9. Park J-S, Choi S-Y, Zheng M, et al. Epicardial adipose tissue thickness is a predictor for plaque vulnerability in patients with significant coronary artery disease. Atherosclerosis. 2013;226:134-139.10.1016/j.atherosclerosis.2012.11.00123206980
  10. 10. Narula J, Nakano M, Virmani R, et al. Histopathologic Characteristics of Atherosclerotic Coronary Disease and Implications of the Findings for the Invasive and Noninvasive Detection of Vulnerable Plaques. J Am Coll Cardiol. 2013;61:1041-1051.10.1016/j.jacc.2012.10.054393130323473409
  11. 11. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons From Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262-1275.10.1161/01.ATV.20.5.126210807742
  12. 12. Boucher P, Matz RL, Terrand J. atherosclerosis: gone with the Wnt? Atherosclerosis. 2020;301:15-22.
  13. 13. Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16:727-744.10.1038/s41569-019-0227-931243391
  14. 14. Clarke MCH, Talib S, Figg NL, Bennett MR. Vascular Smooth Muscle Cell Apoptosis Induces Interleukin-1–Directed Inflammation: Effects of Hyperlipidemia-Mediated Inhibition of Phagocytosis. Circ Res. 2010;106:363-372.10.1161/CIRCRESAHA.109.20838919926874
  15. 15. Nakashima Y, Wight TN, Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res. 2008;79:14-23.10.1093/cvr/cvn09918430750
  16. 16. Yonetsu T, Kakuta T, Lee T, et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J. 2011;32:1251-1259.10.1093/eurheartj/ehq51821273202
  17. 17. Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Coronary Risk Factors and Plaque Morphology in Men with Coronary Disease Who Died Suddenly. N Engl J Med. 1997;336:1276-1282.10.1056/NEJM1997050133618029113930
  18. 18. Arbustini E, Bello BD, Morbini P, et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart. 1999;82:269-272.10.1136/hrt.82.3.269172917310455073
  19. 19. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89:36-44.10.1161/01.CIR.89.1.36
  20. 20. Jinnouchi H, Virmani R, Finn AV. Are characteristics of plaque erosion defined by optical coherence tomography similar to true erosion in pathology? Eur Heart J. 2018;39:2086-2089.
  21. 21. Kramer MCA, Rittersma SZH, de Winter RJ, et al. Relationship of Thrombus Healing to Underlying Plaque Morphology in Sudden Coronary Death. J Am Coll Cardiol. 2010;55:122-132.10.1016/j.jacc.2009.09.00719818571
  22. 22. Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart. 1999;82:265-268.10.1136/hrt.82.3.265172916210455072
  23. 23. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J. 1983;50:127-134.10.1136/hrt.50.2.1274813846882602
  24. 24. Kolodgie FD, Fowler DR, Farb A, Narula J. Intraplaque Hemorrhage and Progression of Coronary Atheroma. N Engl J Med. 2003:10:2316-2325.10.1056/NEJMoa03565514668457
  25. 25. Sluimer JC, Kolodgie FD, Bijnens APJJ, et al. Thin-Walled Microvessels in Human Coronary Atherosclerotic Plaques Show Incomplete Endothelial Junctions. J Am Coll Cardiol. 2009;53:1517-152710.1016/j.jacc.2008.12.056275645819389562
  26. 26. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Heart. 1993;69:377-381.10.1136/hrt.69.5.37710250958518056
  27. 27. Proudfoot D, Skepper JN, Hegyi L, Bennett MR, Shanahan CM, Weissberg PL. Apoptosis Regulates Human Vascular Calcification In Vitro: Evidence for Initiation of Vascular Calcification by Apoptotic Bodies. Circ Res. 2000;87:1055-1062.10.1161/01.RES.87.11.1055
  28. 28. Patel VA, Zhang Q-J, Siddle K, et al. Defect in Insulin-Like Growth Factor-1 Survival Mechanism in Atherosclerotic Plaque–Derived Vascular Smooth Muscle Cells Is Mediated by Reduced Surface Binding and Signaling. Circ Res. 2001;88:895-902.10.1161/hh0901.09030511348998
  29. 29. Ait-Oufella H, Pouresmail V, Simon T, et al. Defective Mer Receptor Tyrosine Kinase Signaling in Bone Marrow Cells Promotes Apoptotic Cell Accumulation and Accelerates Atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28:1429-1431.10.1161/ATVBAHA.108.16907818467644
  30. 30. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the Vulnerable Plaque. J Am Coll Cardiol. 2006;47:C13-C18.10.1016/j.jacc.2005.10.06516631505
  31. 31. Hutcheson JD, Goettsch C, Bertazzo S, et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater. 2016;15:335-343.10.1038/nmat4519476767526752654
  32. 32. Gijsen F, van der Giessen A, van der Steen A, Wentzel J. Shear stress and advanced atherosclerosis in human coronary arteries. J Biomech. 2013;46:240-247.10.1016/j.jbiomech.2012.11.00623261245
  33. 33. Yu H, Fellows A, Foote K, et al. FOXO3a (Forkhead Transcription Factor O Subfamily Member 3a) Links Vascular Smooth Muscle Cell Apoptosis, Matrix Breakdown, Atherosclerosis, and Vascular Remodeling Through a Novel Pathway Involving MMP13 (Matrix Metalloproteinase 13). Arterioscler Thromb Vasc Biol. 2018;38:555-565.10.1161/ATVBAHA.117.310502582838729326312
  34. 34. Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci. 2006;103:14678-14683.10.1073/pnas.0606310103159541117003118
  35. 35. Pursnani A, Schlett CL, Mayrhofer T, et al. Potential for coronary CT angiography to tailor medical therapy beyond preventive guideline-based recommendations: Insights from the ROMICAT I trial. J Cardiovasc Comput Tomogr. 2015;9:193-201.10.1016/j.jcct.2015.02.006684969325846248
  36. 36. Honigberg MC, Lander BS, Baliyan V, et al. Preventive Management of Nonobstructive CAD After Coronary CT Angiography in the Emergency Department. JACC Cardiovasc Imaging. 2020;13:437-448.10.1016/j.jcmg.2019.04.021695434631326481
  37. 37. Chieffo A, Giustino G, Spagnolo P, et al. Routine Screening of Coronary Artery Disease With Computed Tomographic Coronary Angiography in Place of Invasive Coronary Angiography in Patients Undergoing Transcatheter Aortic Valve Replacement. Circ Cardiovasc Interv. 2015;8: e002025.10.1161/CIRCINTERVENTIONS.114.00202526160830
  38. 38. Julio Nunez GM. Coronary Angiography, Too Far to be a Gold Standard Technique for Identifying a Vulnerable Plaque. Journal of Clinical & Experimental Cardiology. 2011;02:1000132.10.4172/2155-9880.1000132
  39. 39. Tearney GJ, Regar E, Akasaka T, et al. Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies. J Am Coll Cardiol. 2012;59:1058-1072.10.1016/j.jacc.2011.09.07922421299
  40. 40. Hong YJ, Jeong MH, Choi YH, et al. Comparison of Coronary Plaque Components between Non-Culprit Lesions in Patients with Acute Coronary Syndrome and Target Lesions in Patients with Stable Angina: Virtual Histology-Intravascular Ultrasound Analysis. Korean Circ J. 2013;43:607.10.4070/kcj.2013.43.9.607380885624174961
  41. 41. Hong M-K, Mintz GS, Lee CW, et al. Comparison of Virtual Histology to Intravascular Ultrasound of Culprit Coronary Lesions in Acute Coronary Syndrome and Target Coronary Lesions in Stable Angina Pectoris. Am J Cardiol. 2007;100:953-959.10.1016/j.amjcard.2007.04.03417826376
  42. 42. Rubin GD. Emerging and Evolving Roles for CT in Screening for Coronary Heart Disease. J Am Coll Radiol. 2013;10:943-948.10.1016/j.jacr.2013.09.01824295945
  43. 43. Pontone G, Bertella E, Mushtaq S, et al. Coronary Artery Disease: Diagnostic Accuracy of CT Coronary Angiography—A Comparison of High and Standard Spatial Resolution Scanning. Radiology. 2014;271:688-694.10.1148/radiol.1313090924520943
  44. 44. Knuuti J. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Russ J Cardiol. 2020;25:119-180.10.15829/1560-4071-2020-2-3757
  45. 45. Thomsen C, Abdulla J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: a systematic review and meta-analysis. Eur Heart J – Cardiovasc Imaging. 2016;17:120-129.10.1093/ehjci/jev325488289626690951
  46. 46. Otsuka K, Fukuda S, Tanaka A, et al. Napkin-Ring Sign on Coronary CT Angiography for the Prediction of Acute Coronary Syndrome. JACC Cardiovasc Imaging. 2013;6:448-457.10.1016/j.jcmg.2012.09.01623498679
  47. 47. Kolossváry M, Karády J, Szilveszter B, et al. Radiomic Features Are Superior to Conventional Quantitative Computed Tomographic Metrics to Identify Coronary Plaques With Napkin-Ring Sign. Circ Cardiovasc Imaging. 2017;10:e006843.10.1161/CIRCIMAGING.117.006843575383229233836
  48. 48. Maurovich-Horvat P, Schlett CL, Alkadhi H, et al. The Napkin-Ring Sign Indicates Advanced Atherosclerotic Lesions in Coronary CT Angiography. JACC Cardiovasc Imaging. 2012;5:1243-1252.10.1016/j.jcmg.2012.03.01923236975
  49. 49. Maurovich-Horvat P, Hoffmann U, Vorpahl M, Nakano M, Virmani R, Alkadhi H. The Napkin-Ring Sign: CT Signature of High-Risk Coronary Plaques? JACC Cardiovasc Imaging. 2010;3:440-444.
  50. 50. Williams MC, Moss AJ, Dweck M, et al. Coronary Artery Plaque Characteristics Associated With Adverse Outcomes in the SCOT-HEART Study. J Am Coll Cardiol. 2019;73:291-301.10.1016/j.jacc.2018.10.066634289330678759
  51. 51. Ferencik M, Mayrhofer T, Bittner DO, et al. Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients With Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial. JAMA Cardiol. 2018;3:144.10.1001/jamacardio.2017.4973583860129322167
  52. 52. Senoner T, Plank F, Barbieri F, et al. Added value of high-risk plaque criteria by coronary CTA for prediction of long-term outcomes. Atherosclerosis. 2020;300:26-33.10.1016/j.atherosclerosis.2020.03.01932298907
  53. 53. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of Vulnerable/ Unstable Plaque. Arterioscler Thromb Vasc Biol. 2010;30:1282-1292.10.1161/ATVBAHA.108.17973920554950
  54. 54. Celeng C, Takx RAP, Ferencik M, Maurovich-Horvat P. Non-invasive and invasive imaging of vulnerable coronary plaque. Trends Cardiovasc Med. 2016;26:538-547.10.1016/j.tcm.2016.03.00527079893
  55. 55. Schepis T, Marwan M, Pflederer T, et al. Quantification of non-calcified coronary atherosclerotic plaques with dual-source computed tomography: comparison with intravascular ultrasound. Heart. 2010;96:610-615.10.1136/hrt.2009.18422619933294
  56. 56. Ito T, Terashima M, Kaneda H, et al. Comparison of In Vivo Assessment of Vulnerable Plaque by 64-Slice Multislice Computed Tomography Versus Optical Coherence Tomography. Am J Cardiol. 2011;107:1270-1277.10.1016/j.amjcard.2010.12.03621349480
  57. 57. Kodama T, Kondo T, Oida A, Fujimoto S, Narula J. Computed Tomographic Angiography–Verified Plaque Characteristics and Slow-Flow Phenomenon During Percutaneous Coronary Intervention. JACC Cardiovasc Interv. 2012;5:636-643.10.1016/j.jcin.2012.02.01622721658
  58. 58. Seifarth H, Schlett CL, Nakano M, et al. Histopathological correlates of the napkin-ring sign plaque in coronary CT angiography. Atherosclerosis. 2012;224:90-96.10.1016/j.atherosclerosis.2012.06.02122771191
  59. 59. Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U. Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol. 2014;11:390-402.10.1038/nrcardio.2014.6024755916
  60. 60. Motoyama S, Sarai M, Harigaya H, et al. Computed Tomographic Angiography Characteristics of Atherosclerotic Plaques Subsequently Resulting in Acute Coronary Syndrome. J Am Coll Cardiol. 2009;54:49-57.10.1016/j.jacc.2009.02.06819555840
  61. 61. Feuchtner G, Kerber J, Burghard P, et al. The high-risk criteria low-attenuation plaque <60 HU and the napkin-ring sign are the most powerful predictors of MACE: a long-term follow-up study. Eur Heart J – Cardiovasc Imaging. 2017;18:772-779.10.1093/ehjci/jew16727502292
  62. 62. Moss AJ, Williams MC, Newby DE, Nicol ED. The Updated NICE Guidelines: Cardiac CT as the First-Line Test for Coronary Artery Disease. Curr Cardiovasc Imaging Rep. 2017;10:15.10.1007/s12410-017-9412-6536820528446943
  63. 63. Antoniades C, Kotanidis CP, Berman DS. State-of-the-art review article. Atherosclerosis affecting fat: What can we learn by imaging perivascular adipose tissue? J Cardiovasc Comput Tomogr. 2019;13:288-296.
  64. 64. Oikonomou EK, West HW, Antoniades C. Cardiac Computed Tomography: Assessment of Coronary Inflammation and Other Plaque Features. Arterioscler Thromb Vasc Biol. 2019;39:2207-2219.10.1161/ATVBAHA.119.31289931510795
  65. 65. Houssany-Pissot S, Rosencher J, Allouch P, et al. Screening coronary artery disease with computed tomography angiogram should limit normal invasive coronary angiogram, regardless of pretest probability. Am Heart J. 2020;223:113-119.10.1016/j.ahj.2019.12.02332087878
  66. 66. Douglas PS, Hoffmann U, Patel MR, et al. Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease. N Engl J Med. 2015;372(14):1291-1300.10.1056/NEJMoa1415516447377325773919
  67. 67. Lin GA, Dudley RA, Lucas FL, Malenka DJ, Vittinghoff E, Redberg RF. Frequency of Stress Testing to Document Ischemia Prior to Elective Percutaneous Coronary Intervention. JAMA. 2008;300:1765-1773.10.1001/jama.300.15.176518854538
  68. 68. Nakazato R, Arsanjani R, Achenbach S, et al. Age-related risk of major adverse cardiac event risk and coronary artery disease extent and severity by coronary CT angiography: results from 15 187 patients from the International Multisite CONFIRM Study. Eur Heart J – Cardiovasc Imaging. 2014;15:586-594.10.1093/ehjci/jet132397945424714312
  69. 69. Giannopoulos AA, Mitsouras D, Bartykowszki A, et al. High-Risk Plaque Regression and Stabilization: Hybrid Noninvasive Morphological and Hemodynamic Assessment. Circ Cardiovasc Imaging. 2018;11:e007888.10.1161/CIRCIMAGING.118.007888607034829970381
  70. 70. Shi R, Shi K, Yang Z, et al. Serial coronary computed tomography angiography-verified coronary plaque progression: comparison of stented patients with or without diabetes. Cardiovasc Diabetol. 2019;18:123.10.1186/s12933-019-0924-z676006131551077
  71. 71. Lee S-E, Chang H-J, Rizvi A, et al. Rationale and design of the Progression of AtheRosclerotic PlAque DetermIned by Computed TomoGraphic Angiography IMaging (PARADIGM) registry: A comprehensive exploration of plaque progression and its impact on clinical outcomes from a multicenter serial coronary computed tomographic angiography study. Am Heart J. 2016;182:72-79.10.1016/j.ahj.2016.09.00327914502
  72. 72. Opincariu D, Benedek T, Chițu M, Raț N, Benedek I. From CT to artificial intelligence for complex assessment of plaque-associated risk. Int J Cardiovasc Imaging. 2020;36:2403-2427.10.1007/s10554-020-01926-132617720
DOI: https://doi.org/10.2478/jim-2021-0006 | Journal eISSN: 2501-8132 | Journal ISSN: 2501-5974
Language: English
Page range: 8 - 14
Submitted on: Dec 11, 2020
|
Accepted on: Jan 14, 2021
|
Published on: Mar 17, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Zsolt Parajkó, István Kovacs, Monica Chițu, Imre Benedek, published by Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.