References
- 1. Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016;37:3232-3245.10.1093/eurheartj/ehw33427523477
- 2. Mushenkova NV, Summerhill VI, Zhang D, Romanenko EB, Grechko AV, Orekhov AN. Current Advances in the Diagnostic Imaging of Atherosclerosis: Insights into the Pathophysiology of Vulnerable Plaque. Int J Mol Sci. 2020;21:2992.10.3390/ijms21082992721600132340284
- 3. Eikendal ALM, Groenewegen KA, Bots ML, Peters SAE, Uiterwaal CSPM, den Ruijter HM. Relation Between Adolescent Cardiovascular Risk Factors and Carotid Intima-Media Echogenicity in Healthy Young Adults: The Atherosclerosis Risk in Young Adults (ARYA) Study. J Am Heart Assoc. 2016;5: e002941.10.1161/JAHA.115.002941488917427172911
- 4. Libby P. Mechanisms of Acute Coronary Syndromes and Their Implications for Therapy. N Engl J Med. 2013;368:2004-2013.10.1056/NEJMra121606323697515
- 5. The SCOT-HEART Investigators. Coronary CT Angiography and 5-Year Risk of Myocardial Infarction. N Engl J Med. 2018;379:924-933.10.1056/NEJMoa180597130145934
- 6. Glaser R, Selzer F, Faxon DP, et al. Clinical Progression of Incidental, Asymptomatic Lesions Discovered During Culprit Vessel Coronary Intervention. Circulation. 2005;111:143-149.10.1161/01.CIR.0000150335.01285.1215623544
- 7. Stone GW, Maehara A, Lansky AJ, et al. A Prospective Natural-History Study of Coronary Atherosclerosis. N Engl J Med. 2011;364:226-235.10.1056/NEJMoa100235821247313
- 8. Pugliese G, Iacobini C, Fantauzzi CB, Menini S. The dark and bright side of atherosclerotic calcification. Atherosclerosis. 2015;238:220-230.10.1016/j.atherosclerosis.2014.12.01125528431
- 9. Park J-S, Choi S-Y, Zheng M, et al. Epicardial adipose tissue thickness is a predictor for plaque vulnerability in patients with significant coronary artery disease. Atherosclerosis. 2013;226:134-139.10.1016/j.atherosclerosis.2012.11.00123206980
- 10. Narula J, Nakano M, Virmani R, et al. Histopathologic Characteristics of Atherosclerotic Coronary Disease and Implications of the Findings for the Invasive and Noninvasive Detection of Vulnerable Plaques. J Am Coll Cardiol. 2013;61:1041-1051.10.1016/j.jacc.2012.10.054393130323473409
- 11. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons From Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262-1275.10.1161/01.ATV.20.5.126210807742
- 12. Boucher P, Matz RL, Terrand J. atherosclerosis: gone with the Wnt? Atherosclerosis. 2020;301:15-22.
- 13. Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16:727-744.10.1038/s41569-019-0227-931243391
- 14. Clarke MCH, Talib S, Figg NL, Bennett MR. Vascular Smooth Muscle Cell Apoptosis Induces Interleukin-1–Directed Inflammation: Effects of Hyperlipidemia-Mediated Inhibition of Phagocytosis. Circ Res. 2010;106:363-372.10.1161/CIRCRESAHA.109.20838919926874
- 15. Nakashima Y, Wight TN, Sueishi K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc Res. 2008;79:14-23.10.1093/cvr/cvn09918430750
- 16. Yonetsu T, Kakuta T, Lee T, et al. In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography. Eur Heart J. 2011;32:1251-1259.10.1093/eurheartj/ehq51821273202
- 17. Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Coronary Risk Factors and Plaque Morphology in Men with Coronary Disease Who Died Suddenly. N Engl J Med. 1997;336:1276-1282.10.1056/NEJM1997050133618029113930
- 18. Arbustini E, Bello BD, Morbini P, et al. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart. 1999;82:269-272.10.1136/hrt.82.3.269172917310455073
- 19. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89:36-44.10.1161/01.CIR.89.1.36
- 20. Jinnouchi H, Virmani R, Finn AV. Are characteristics of plaque erosion defined by optical coherence tomography similar to true erosion in pathology? Eur Heart J. 2018;39:2086-2089.
- 21. Kramer MCA, Rittersma SZH, de Winter RJ, et al. Relationship of Thrombus Healing to Underlying Plaque Morphology in Sudden Coronary Death. J Am Coll Cardiol. 2010;55:122-132.10.1016/j.jacc.2009.09.00719818571
- 22. Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart. 1999;82:265-268.10.1136/hrt.82.3.265172916210455072
- 23. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J. 1983;50:127-134.10.1136/hrt.50.2.1274813846882602
- 24. Kolodgie FD, Fowler DR, Farb A, Narula J. Intraplaque Hemorrhage and Progression of Coronary Atheroma. N Engl J Med. 2003:10:2316-2325.10.1056/NEJMoa03565514668457
- 25. Sluimer JC, Kolodgie FD, Bijnens APJJ, et al. Thin-Walled Microvessels in Human Coronary Atherosclerotic Plaques Show Incomplete Endothelial Junctions. J Am Coll Cardiol. 2009;53:1517-152710.1016/j.jacc.2008.12.056275645819389562
- 26. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Heart. 1993;69:377-381.10.1136/hrt.69.5.37710250958518056
- 27. Proudfoot D, Skepper JN, Hegyi L, Bennett MR, Shanahan CM, Weissberg PL. Apoptosis Regulates Human Vascular Calcification In Vitro: Evidence for Initiation of Vascular Calcification by Apoptotic Bodies. Circ Res. 2000;87:1055-1062.10.1161/01.RES.87.11.1055
- 28. Patel VA, Zhang Q-J, Siddle K, et al. Defect in Insulin-Like Growth Factor-1 Survival Mechanism in Atherosclerotic Plaque–Derived Vascular Smooth Muscle Cells Is Mediated by Reduced Surface Binding and Signaling. Circ Res. 2001;88:895-902.10.1161/hh0901.09030511348998
- 29. Ait-Oufella H, Pouresmail V, Simon T, et al. Defective Mer Receptor Tyrosine Kinase Signaling in Bone Marrow Cells Promotes Apoptotic Cell Accumulation and Accelerates Atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28:1429-1431.10.1161/ATVBAHA.108.16907818467644
- 30. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the Vulnerable Plaque. J Am Coll Cardiol. 2006;47:C13-C18.10.1016/j.jacc.2005.10.06516631505
- 31. Hutcheson JD, Goettsch C, Bertazzo S, et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater. 2016;15:335-343.10.1038/nmat4519476767526752654
- 32. Gijsen F, van der Giessen A, van der Steen A, Wentzel J. Shear stress and advanced atherosclerosis in human coronary arteries. J Biomech. 2013;46:240-247.10.1016/j.jbiomech.2012.11.00623261245
- 33. Yu H, Fellows A, Foote K, et al. FOXO3a (Forkhead Transcription Factor O Subfamily Member 3a) Links Vascular Smooth Muscle Cell Apoptosis, Matrix Breakdown, Atherosclerosis, and Vascular Remodeling Through a Novel Pathway Involving MMP13 (Matrix Metalloproteinase 13). Arterioscler Thromb Vasc Biol. 2018;38:555-565.10.1161/ATVBAHA.117.310502582838729326312
- 34. Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci. 2006;103:14678-14683.10.1073/pnas.0606310103159541117003118
- 35. Pursnani A, Schlett CL, Mayrhofer T, et al. Potential for coronary CT angiography to tailor medical therapy beyond preventive guideline-based recommendations: Insights from the ROMICAT I trial. J Cardiovasc Comput Tomogr. 2015;9:193-201.10.1016/j.jcct.2015.02.006684969325846248
- 36. Honigberg MC, Lander BS, Baliyan V, et al. Preventive Management of Nonobstructive CAD After Coronary CT Angiography in the Emergency Department. JACC Cardiovasc Imaging. 2020;13:437-448.10.1016/j.jcmg.2019.04.021695434631326481
- 37. Chieffo A, Giustino G, Spagnolo P, et al. Routine Screening of Coronary Artery Disease With Computed Tomographic Coronary Angiography in Place of Invasive Coronary Angiography in Patients Undergoing Transcatheter Aortic Valve Replacement. Circ Cardiovasc Interv. 2015;8: e002025.10.1161/CIRCINTERVENTIONS.114.00202526160830
- 38. Julio Nunez GM. Coronary Angiography, Too Far to be a Gold Standard Technique for Identifying a Vulnerable Plaque. Journal of Clinical & Experimental Cardiology. 2011;02:1000132.10.4172/2155-9880.1000132
- 39. Tearney GJ, Regar E, Akasaka T, et al. Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies. J Am Coll Cardiol. 2012;59:1058-1072.10.1016/j.jacc.2011.09.07922421299
- 40. Hong YJ, Jeong MH, Choi YH, et al. Comparison of Coronary Plaque Components between Non-Culprit Lesions in Patients with Acute Coronary Syndrome and Target Lesions in Patients with Stable Angina: Virtual Histology-Intravascular Ultrasound Analysis. Korean Circ J. 2013;43:607.10.4070/kcj.2013.43.9.607380885624174961
- 41. Hong M-K, Mintz GS, Lee CW, et al. Comparison of Virtual Histology to Intravascular Ultrasound of Culprit Coronary Lesions in Acute Coronary Syndrome and Target Coronary Lesions in Stable Angina Pectoris. Am J Cardiol. 2007;100:953-959.10.1016/j.amjcard.2007.04.03417826376
- 42. Rubin GD. Emerging and Evolving Roles for CT in Screening for Coronary Heart Disease. J Am Coll Radiol. 2013;10:943-948.10.1016/j.jacr.2013.09.01824295945
- 43. Pontone G, Bertella E, Mushtaq S, et al. Coronary Artery Disease: Diagnostic Accuracy of CT Coronary Angiography—A Comparison of High and Standard Spatial Resolution Scanning. Radiology. 2014;271:688-694.10.1148/radiol.1313090924520943
- 44. Knuuti J. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Russ J Cardiol. 2020;25:119-180.10.15829/1560-4071-2020-2-3757
- 45. Thomsen C, Abdulla J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: a systematic review and meta-analysis. Eur Heart J – Cardiovasc Imaging. 2016;17:120-129.10.1093/ehjci/jev325488289626690951
- 46. Otsuka K, Fukuda S, Tanaka A, et al. Napkin-Ring Sign on Coronary CT Angiography for the Prediction of Acute Coronary Syndrome. JACC Cardiovasc Imaging. 2013;6:448-457.10.1016/j.jcmg.2012.09.01623498679
- 47. Kolossváry M, Karády J, Szilveszter B, et al. Radiomic Features Are Superior to Conventional Quantitative Computed Tomographic Metrics to Identify Coronary Plaques With Napkin-Ring Sign. Circ Cardiovasc Imaging. 2017;10:e006843.10.1161/CIRCIMAGING.117.006843575383229233836
- 48. Maurovich-Horvat P, Schlett CL, Alkadhi H, et al. The Napkin-Ring Sign Indicates Advanced Atherosclerotic Lesions in Coronary CT Angiography. JACC Cardiovasc Imaging. 2012;5:1243-1252.10.1016/j.jcmg.2012.03.01923236975
- 49. Maurovich-Horvat P, Hoffmann U, Vorpahl M, Nakano M, Virmani R, Alkadhi H. The Napkin-Ring Sign: CT Signature of High-Risk Coronary Plaques? JACC Cardiovasc Imaging. 2010;3:440-444.
- 50. Williams MC, Moss AJ, Dweck M, et al. Coronary Artery Plaque Characteristics Associated With Adverse Outcomes in the SCOT-HEART Study. J Am Coll Cardiol. 2019;73:291-301.10.1016/j.jacc.2018.10.066634289330678759
- 51. Ferencik M, Mayrhofer T, Bittner DO, et al. Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients With Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial. JAMA Cardiol. 2018;3:144.10.1001/jamacardio.2017.4973583860129322167
- 52. Senoner T, Plank F, Barbieri F, et al. Added value of high-risk plaque criteria by coronary CTA for prediction of long-term outcomes. Atherosclerosis. 2020;300:26-33.10.1016/j.atherosclerosis.2020.03.01932298907
- 53. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of Vulnerable/ Unstable Plaque. Arterioscler Thromb Vasc Biol. 2010;30:1282-1292.10.1161/ATVBAHA.108.17973920554950
- 54. Celeng C, Takx RAP, Ferencik M, Maurovich-Horvat P. Non-invasive and invasive imaging of vulnerable coronary plaque. Trends Cardiovasc Med. 2016;26:538-547.10.1016/j.tcm.2016.03.00527079893
- 55. Schepis T, Marwan M, Pflederer T, et al. Quantification of non-calcified coronary atherosclerotic plaques with dual-source computed tomography: comparison with intravascular ultrasound. Heart. 2010;96:610-615.10.1136/hrt.2009.18422619933294
- 56. Ito T, Terashima M, Kaneda H, et al. Comparison of In Vivo Assessment of Vulnerable Plaque by 64-Slice Multislice Computed Tomography Versus Optical Coherence Tomography. Am J Cardiol. 2011;107:1270-1277.10.1016/j.amjcard.2010.12.03621349480
- 57. Kodama T, Kondo T, Oida A, Fujimoto S, Narula J. Computed Tomographic Angiography–Verified Plaque Characteristics and Slow-Flow Phenomenon During Percutaneous Coronary Intervention. JACC Cardiovasc Interv. 2012;5:636-643.10.1016/j.jcin.2012.02.01622721658
- 58. Seifarth H, Schlett CL, Nakano M, et al. Histopathological correlates of the napkin-ring sign plaque in coronary CT angiography. Atherosclerosis. 2012;224:90-96.10.1016/j.atherosclerosis.2012.06.02122771191
- 59. Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U. Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol. 2014;11:390-402.10.1038/nrcardio.2014.6024755916
- 60. Motoyama S, Sarai M, Harigaya H, et al. Computed Tomographic Angiography Characteristics of Atherosclerotic Plaques Subsequently Resulting in Acute Coronary Syndrome. J Am Coll Cardiol. 2009;54:49-57.10.1016/j.jacc.2009.02.06819555840
- 61. Feuchtner G, Kerber J, Burghard P, et al. The high-risk criteria low-attenuation plaque <60 HU and the napkin-ring sign are the most powerful predictors of MACE: a long-term follow-up study. Eur Heart J – Cardiovasc Imaging. 2017;18:772-779.10.1093/ehjci/jew16727502292
- 62. Moss AJ, Williams MC, Newby DE, Nicol ED. The Updated NICE Guidelines: Cardiac CT as the First-Line Test for Coronary Artery Disease. Curr Cardiovasc Imaging Rep. 2017;10:15.10.1007/s12410-017-9412-6536820528446943
- 63. Antoniades C, Kotanidis CP, Berman DS. State-of-the-art review article. Atherosclerosis affecting fat: What can we learn by imaging perivascular adipose tissue? J Cardiovasc Comput Tomogr. 2019;13:288-296.
- 64. Oikonomou EK, West HW, Antoniades C. Cardiac Computed Tomography: Assessment of Coronary Inflammation and Other Plaque Features. Arterioscler Thromb Vasc Biol. 2019;39:2207-2219.10.1161/ATVBAHA.119.31289931510795
- 65. Houssany-Pissot S, Rosencher J, Allouch P, et al. Screening coronary artery disease with computed tomography angiogram should limit normal invasive coronary angiogram, regardless of pretest probability. Am Heart J. 2020;223:113-119.10.1016/j.ahj.2019.12.02332087878
- 66. Douglas PS, Hoffmann U, Patel MR, et al. Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease. N Engl J Med. 2015;372(14):1291-1300.10.1056/NEJMoa1415516447377325773919
- 67. Lin GA, Dudley RA, Lucas FL, Malenka DJ, Vittinghoff E, Redberg RF. Frequency of Stress Testing to Document Ischemia Prior to Elective Percutaneous Coronary Intervention. JAMA. 2008;300:1765-1773.10.1001/jama.300.15.176518854538
- 68. Nakazato R, Arsanjani R, Achenbach S, et al. Age-related risk of major adverse cardiac event risk and coronary artery disease extent and severity by coronary CT angiography: results from 15 187 patients from the International Multisite CONFIRM Study. Eur Heart J – Cardiovasc Imaging. 2014;15:586-594.10.1093/ehjci/jet132397945424714312
- 69. Giannopoulos AA, Mitsouras D, Bartykowszki A, et al. High-Risk Plaque Regression and Stabilization: Hybrid Noninvasive Morphological and Hemodynamic Assessment. Circ Cardiovasc Imaging. 2018;11:e007888.10.1161/CIRCIMAGING.118.007888607034829970381
- 70. Shi R, Shi K, Yang Z, et al. Serial coronary computed tomography angiography-verified coronary plaque progression: comparison of stented patients with or without diabetes. Cardiovasc Diabetol. 2019;18:123.10.1186/s12933-019-0924-z676006131551077
- 71. Lee S-E, Chang H-J, Rizvi A, et al. Rationale and design of the Progression of AtheRosclerotic PlAque DetermIned by Computed TomoGraphic Angiography IMaging (PARADIGM) registry: A comprehensive exploration of plaque progression and its impact on clinical outcomes from a multicenter serial coronary computed tomographic angiography study. Am Heart J. 2016;182:72-79.10.1016/j.ahj.2016.09.00327914502
- 72. Opincariu D, Benedek T, Chițu M, Raț N, Benedek I. From CT to artificial intelligence for complex assessment of plaque-associated risk. Int J Cardiovasc Imaging. 2020;36:2403-2427.10.1007/s10554-020-01926-132617720