Have a personal or library account? Click to login
Cardiovascular Risk Factors from Another Point of View Cover

Cardiovascular Risk Factors from Another Point of View

Open Access
|Mar 2021

References

  1. 1. World Health Organization. Global diffusion of eHealth: making universal health coverage achievable: report of the third global survey on eHealth. World Health Organization, 2017.
  2. 2. Finegold JA, Asaria P, Francis DP. Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. Int J Cardiol. 2013;168:934-945.10.1016/j.ijcard.2012.10.046
  3. 3. Kannel WB, Abbott RD, et al. Epidemiologic features of chronic atrial fibrillation: the Framingham study. N Engl J Med. 1982;306:1018-22.10.1056/NEJM198204293061703
  4. 4. Kralev S, Schneider K, et al. Incidence and severity of coronary artery disease in patients with atrial fibrillation undergoing first-time coronary angiography. PLoS One. 2011;6:e24964.10.1371/journal.pone.0024964
  5. 5. Golia E, Limongelli G, Natale F, et al. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr Atheroscler Rep. 2014;16:435.10.1007/s11883-014-0435-z
  6. 6. Goldberger JJ, Cain ME, Hohnloser SH, et al. American Heart Association/ American College of Cardiology Foundation/Heart Rhythm Society scientific statement on noninvasive risk stratification techniques for identifying patients at risk for sudden cardiac death: a scientific statement from the American Heart Association Council on Clinical Cardiology Committee on Electrocardiography and Arrhythmias and Council on Epidemiology and Prevention. Circulation. 2008;118:1497-518.10.1161/CIRCULATIONAHA.107.189375
  7. 7. Schmermund A, Eckert J, Schmidt M, et al. Coronary computed tomography angiography: a method coming of age. Clin Res Cardiol. 2018;107:40-48.10.1007/s00392-018-1320-5
  8. 8. Hadamitzky M, Taubert S, Deseive S, et al. Prognostic value of coronary computed tomography angiography during 5 years of follow-up in patients with suspected coronary artery disease. Eur Heart J. 2013;34:3277-3285.10.1093/eurheartj/eht293
  9. 9. Hadamitzky M, Achenbach S, Al-Mallah M, et al. Optimized prognostic score for coronary computed tomographic angiography: results from the CONFIRM registry (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter Registry). J Am Coll Cardiol. 2013;62:468-476.10.1016/j.jacc.2013.04.064
  10. 10. SCOT-HEART investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385:2383-2391.10.1016/S0140-6736(15)60291-4
  11. 11. Newby DE, Adamson PD, Berry C, et al. SCOT-HEART Investigators. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med. 2018;379:924-933.10.1056/NEJMoa180597130145934
  12. 12. Adamson PD, Williams MC, Dweck MR, et al. SCOT-HEART Investigators. Guiding therapy by coronary CT angiography improves outcomes in patients with stable chest pain. J Am Coll Cardiol. 2019;74:2058-2070.10.1016/j.jacc.2019.07.085689944631623764
  13. 13. Douglas PS, Hoffmann U, Patel MR, et al. PROMISE Investigators. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291-1300.10.1056/NEJMoa1415516447377325773919
  14. 14. Budoff MJ, Dowe D, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724-1732.10.1016/j.jacc.2008.07.03119007693
  15. 15. Maurovich-Horvat P, Ferencik M, et al. Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol. 2014;11:390-402.10.1038/nrcardio.2014.6024755916
  16. 16. Miller JM, Rochitte CE, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324-2336.10.1056/NEJMoa080657619038879
  17. 17. Nerlekar N, Ha FJ, et al. Computed tomographic coronary angiography-derived plaque characteristics predict major adverse cardiovascular events: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2018;10:e006973.10.1161/CIRCIMAGING.117.00697329305348
  18. 18. Soraya T. Inflammation in atherosclerosis. Elsevier. 2016;109(12):708-715.
  19. 19. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol. 2009;27:165-197.10.1146/annurev.immunol.021908.132620273440719302038
  20. 20. Arida A, Protogerou AD, et al. Systemic Inflammatory Response and Atherosclerosis: The Paradigm of Chronic Inflammatory Rheumatic Diseases. Int J Mol Sci. 2018;19:1890.10.3390/ijms19071890607340729954107
  21. 21. Aviña-Zubieta JA, Choi HK, Sadatsafavi M, et al. Risk of cardiovascular mortality in patients with rheumatoid arthritis: A meta-analysis of observational studies. Arthritis Care Res. 2008;59:1690-1697.10.1002/art.2409219035419
  22. 22. Rodean IP, Lazar L, Opincariu D, et al. Association between periodontal disease, coronary calcium score and markers of subclinical atherosclerosis in patients with unstable angina – a CT-based sub-study from the ATHERODENT clinical trial. European Heart Journal – Cardiovascular Imaging. 2020;21:jez319.299.10.1093/ehjci/jez319.299
  23. 23. Dorn SD, Sandler RS. Inflammatory bowel disease is not a risk factor for cardiovascular disease mortality: results from a systematic review and meta-analysis. Am J Gastroenterol. 2007;102:662-667.10.1111/j.1572-0241.2006.01018.x17156143
  24. 24. Zanoli L, Signorelli SS, Inserra G, Castellino P. Subclinical Atherosclerosis in Patients With Inflammatory Bowel Diseases: A Systematic Review and Meta-Analysis. Angiology. 2017;68:463.10.1177/000331971667507627784730
  25. 25. Kristensen SL, Ahlehoff O, Lindhardsen J, et al. Disease activity in inflammatory bowel disease is associated with increased risk of myocardial infarction, stroke and cardiovascular death – a Danish nationwide cohort study. PLoS One. 2013;8:e56944.10.1371/journal.pone.0056944357407923457642
  26. 26. Yarur AJ, Deshpande AR, Pechman DM, et al. Inflammatory bowel disease is associated with an increased incidence of cardiovascular events. Am J Gastroenterol. 2011;106:741-747.10.1038/ajg.2011.6321386828
  27. 27. Aniwan S, Pardi DS, Tremaine WJ, Loftus EV Jr. Increased Risk of Acute Myocardial Infarction and Heart Failure in Patients With Inflammatory Bowel Diseases. Clin Gastroenterol Hepatol. 2018;16:1607-1615.10.1016/j.cgh.2018.04.031615282829702298
  28. 28. Kirchgesner J, Beaugerie L, Carrat F for the BERENICE study group, et al. Increased risk of acute arterial events in young patients and severely active IBD: a nationwide French cohort study. Gut. 2018;67:1261-1268.10.1136/gutjnl-2017-31401528647686
  29. 29. Tsai MS, Lin CL, Chen HP, Lee PH, Sung FC, Kao CH. Long-term Risk of Acute Coronary Syndrome in Patients with Inflammatory Bowel Disease: A 13-year Nationwide Cohort Study in an Asian Population. Inflammatory Bowel Diseases. 2014;20:502-507.10.1097/01.MIB.0000441200.10454.4f24412991
  30. 30. Weissman S, Sinh P, Mehta TI, et al. Atherosclerotic cardiovascular disease in inflammatory bowel disease: The role of chronic inflammation. World J Gastrointest Pathophysiol. 2020;11:104-113.10.4291/wjgp.v11.i5.104740375332832194
  31. 31. Wang H, Liu Z, Shao J, et al. Immune and Inflammation in Acute Coronary Syndrome: Molecular Mechanisms and Therapeutic Implications. J Immunol Res. 2020;2020:4904217.10.1155/2020/4904217745030932908939
  32. 32. Libby P, Tabas I, Fredman G, Fisher EA. Inflammation and its resolution as determinants of acute coronary syndromes. Circulation Research. 2014;114:1867-1879.10.1161/CIRCRESAHA.114.302699407876724902971
  33. 33. Lahdentausta L, Leskelä J, Winkelmann A, et al. Serum MMP-9 diagnostics, prognostics, and activation in acute coronary syndrome and its recurrence. Journal of Cardiovascular Translational Research. 2018;11:210-220.10.1007/s12265-018-9789-x
  34. 34. Kai H, Ikeda H, Yasukawa H, et al. Peripheral blood levels of matrix metalloproteases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol. 1998;32:368-372.10.1016/S0735-1097(98)00250-2
  35. 35. Inokubo Y, Hanada H, Ishizaka H, Fukushi T, Kamada T, Okumura K. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. American Heart Journal. 2001;141:211-217.10.1067/mhj.2001.11223811174334
  36. 36. Derosa G, D’Angelo A, Scalise F, et al. Comparison between metalloproteinases-2 and -9 in healthy subjects, diabetics, and subjects with acute coronary syndrome. Heart and Vessels. 2007;22:361-370.10.1007/s00380-007-0989-618043992
  37. 37. Dumitriu IE, Baruah P, Finlayson CJ, et al. High levels of costimulatory receptors OX40 and 4-1BB characterize CD4+CD28null T cells in patients with acute coronary syndrome. Circulation Research. 2012;110:857-869.10.1161/CIRCRESAHA.111.26193322282196
  38. 38. Saigusa R, Winkels H, Ley K. T cell subsets and functions in atherosclerosis. Nature Reviews Cardiology. 2020;17:387-401.10.1038/s41569-020-0352-5787221032203286
  39. 39. Rezaee-Zavareh MS, Tohidi M, Sabouri A, Ramezani-Binabaj M, Sadeghi-Ghahrodi M, Einollahi B. Infectious and coronary artery disease. ARYA Atheroscler. 2016;12:41-49.
  40. 40. Higuchi ML, Ramires JAF. Infectious agents in coronary atheromas: a possible role in the pathogenesis of plaque rupture and acute myocardial infarction. Revista do Instituto de Medicina Tropical de São Paulo. 2002;44:217-224.10.1590/S0036-46652002000400007
  41. 41. Shah PK. Plaque disruption and thrombosis: potential role of inflammation and infection. Cardiol Rev. 2000;8:31-39.10.1097/00045415-200008010-00007
  42. 42. Pesonen E, El-Segaier M, Persson K, et al. Infections as a stimulus for coronary occlusion, obstruction, or acute coronary syndromes. Therapeutic Advances in Cardiovascular Disease. 2009;3:447-454.10.1177/175394470934559819773293
  43. 43. Thygesen K, Alpert JS, Jaffe AS, et al. Third Universal Definition of Myocardial Infarction. Circulation. 2012;126:2020-2035.10.1161/CIR.0b013e31826e105822923432
  44. 44. Musher DM, Abers MS, Corrales-Medina VF. Acute Infection and Myocardial Infarction. N Engl J Med. 2019;380:171-176.10.1056/NEJMra180813730625066
  45. 45. Ridker PM, Cushman M, Stampfer MJ, et al. Inflammation, aspirin and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973-97910.1056/NEJM1997040333614019077376
  46. 46. Ridker P, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836-843.10.1056/NEJM20000323342120210733371
  47. 47. Ridker PM. High sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation. 2001;103:1813-1818.10.1161/01.CIR.103.13.181311282915
  48. 48. Ridker P, Rifai N, Rose L, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347:1557-1565.10.1056/NEJMoa02199312432042
  49. 49. Ridker PM, Buring JE, Cook NR, et al. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14,719 initially healthy American women. Circulation. 2003;107:391-397.10.1161/01.CIR.0000055014.62083.05
  50. 50. Koenig W, Sund M, Fröhlich M, et al. C-reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men. Circulation. 1999;99:237-242.10.1161/01.CIR.99.2.237
  51. 51. Coelho Graça D, Golaz O, Magnin J-L, et al. CRP-Based Cardiovascular Risk Assessment: New Conventional CRP Assay Fit for Purpose? The Journal of Applied Laboratory Medicine. 2018;2:952-959.
  52. 52. Danesh J, Wheeler JG, Hirschfield GM. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350:1387-1397.10.1056/NEJMoa03280415070788
  53. 53. Wang TJ, Gona P, Larson MG. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 2006;355:2631-2639.10.1056/NEJMoa05537317182988
  54. 54. Blankenberg S, Zeller T, Saarela O. Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation. 2010;121:2388-2397.10.1161/CIRCULATIONAHA.109.90141320497981
  55. 55. Seo WW, Kim H-L, Kim Y-J, et al. Incremental prognostic value of high-sensitive C-reactive protein in patients undergoing coronary computed tomography angiography. Journal of Cardiology. 2016;68:222-22810.1016/j.jjcc.2015.09.010
  56. 56. Kubo T, Matsuo Y, Hayashi Y, et al. High-sensitivity C-reactive protein and plaque composition in patients with stable angina pectoris: a virtual histology intravascular ultrasound study. Coron Artery Dis. 2009;20:531-535.10.1097/MCA.0b013e328332a6b0
  57. 57. Sanchís J, Bodí V, Llácer A, et al. Relación de los valores de proteína C reactiva con los hallazgos angiográficos y los marcadores de necrosis en el síndrome coronario agudo sin elevación del segmento ST. Rev Esp Cardiol. 2004;57:382-387.10.1016/S0300-8932(04)77122-5
  58. 58. Inoue T, Kato T, Uchida T, et al. Local release of C-reactive protein from vulnerable plaque or coronary arterial wall injured by stenting. J Am Coll Cardiol. 2005;46:239-245.10.1016/j.jacc.2005.04.02916022949
  59. 59. Mani P, Puri R, Schwartz GG, et al. Association of Initial and Serial C-Reactive Protein Levels With Adverse Cardiovascular Events and Death After Acute Coronary Syndrome: A Secondary Analysis of the VISTA-16 Trial. JAMA Cardiol. 2019;4:314-320.10.1001/jamacardio.2019.0179648478530840024
  60. 60. Lucci C, Cosentino N, Genovese S, et al. Prognostic impact of admission high-sensitivity C-reactive protein in acute myocardial infarction patients with and without diabetes mellitus. Cardiovasc Diabetol. 2020;19:183.10.1186/s12933-020-01157-7757682033081810
  61. 61. Suleiman M, Aronson D, Reisner SA, et al. Admission C-reactive protein levels and 30-day mortality in patients with acute myocardial infarction. Am J Med. 2003;115:695-701.10.1016/j.amjmed.2003.06.00814693321
  62. 62. Morariu M, Márton E, Mester A, et al. Association Between Acute Inflammatory Response and Infarct Size in Stemi Patients Undergoing Primary PCI. Journal Of Cardiovascular Emergencies. 2018;4:140-146.10.2478/jce-2018-0017
  63. 63. Lazzerini PE, Capecchi PL, Laghi-Pasini F. Systemic inflammation and arrhythmic risk: lessons from rheumatoid arthritis. Eur Heart J. 2017;38:1717-1727.
  64. 64. Ungprasert P, Srivali N, Kittanamongkolchai W. Risk of incident atrial fibrillation in patients with rheumatoid arthritis: a systematic review and meta-analysis. Int J Rheum Dis. 2017;20:434-441.10.1111/1756-185X.1282026692475
  65. 65. Ahlehoff O, Gislason GH, Jørgensen CH, et al. Psoriasis and risk of atrial fibrillation and ischaemic stroke: a danish nationwide cohort study. Eur Heart J. 2012;33:2054-2064.10.1093/eurheartj/ehr28521840930
  66. 66. Efe TH, Cimen T, Ertem AG, et al. Atrial Electromechanical properties in inflammatory bowel disease. Echocardiography. 2016;33:1309-1316.10.1111/echo.1326127158773
  67. 67. Seferović PM, Ristić AD, Maksimović R, et al. Cardiac arrhythmias and conduction disturbances in autoimmune rheumatic diseases. Rheumatology. 2006;45:39-42.10.1093/rheumatology/kel31516980722
  68. 68. Korantzopoulos P, Letsas KP, Tse G, et al. Inflammation and atrial fibrillation: A comprehensive review. J Arrhythm. 2018;34:394-401.10.1002/joa3.12077611147730167010
  69. 69. Wu N, Xiang Y, Wu L, et al. Association of inflammatory factors with occurrence and recurrence of atrial fibrillation: A meta-analysis. Int J Cardiol. 2013;169:62-72.10.1016/j.ijcard.2013.08.07824095158
  70. 70. Chung MK, Martin DO, Sprecher D, et al. C-reactive protein elevation in patients with atrial arrhythmias: Inflammatory mechanisms and persistence of atrial fibrillation. Circulation. 2001;104:2886-2891.10.1161/hc4901.10176011739301
  71. 71. Rienstra M, Sun JX, Magnani JW, et al. White blood cell count and risk of incident atrial fibrillation (from the Framingham Heart Study). Am J Cardiol. 2012;109:533-537.10.1016/j.amjcard.2011.09.049327011822100030
  72. 72. Weymann A, Ali-Hasan-Al-Saegh S, Sabashnikov A, et al. Prediction of new-onset and recurrent atrial fibrillation by complete blood count tests: a comprehensive systematic review with meta-analysis. Med Sci Monit Basic Res. 2017;23:179-222.10.12659/MSMBR.903320543953528496093
  73. 73. Shao Q, Chen K, Rha SW, Lim HE, Li G, Liu T. Usefulness of neutrophil/ lymphocyte ratio as a predictor of atrial fibrillation: a meta-analysis. Arch Med Res. 2015;46:199-206.10.1016/j.arcmed.2015.03.01125980945
DOI: https://doi.org/10.2478/jim-2021-0003 | Journal eISSN: 2501-8132 | Journal ISSN: 2501-5974
Language: English
Page range: 27 - 31
Submitted on: Dec 11, 2020
Accepted on: Jan 14, 2021
Published on: Mar 17, 2021
Published by: Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Péter Balázs Oltean, István Kovács, Roxana Hodas, Theodora Benedek, published by Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.