References
- 1. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115-126.10.1056/NEJM199901143400207
- 2. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685-1695.10.1056/NEJMra043430
- 3. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol. 2004;24:12-22.10.1161/01.ATV.0000105054.43931.f0
- 4. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035-2042.10.1001/jama.282.21.2035
- 5. Stone P, Coskun A, Yeghiazarians Y, et al. Prediction of sites of coronary atherosclerosis progression: in vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr Opin Cardiol. 2003;18:458-470.10.1097/00001573-200311000-00007
- 6. Gimbrone MA Jr., Topper JN, Nagel T, Anderson KR, Garcia-Cardena G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci. 2000;902:230-239.10.1111/j.1749-6632.2000.tb06318.x
- 7. Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 2005;85:9-23.10.1038/labinvest.3700215
- 8. Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early atheroma in man. Nature. 1969;223:1159-1160.10.1038/2231159a0
- 9. Asakura T, Karino T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res. 1990;66:1045-1066.10.1161/01.RES.66.4.1045
- 10. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5:293-302.10.1161/01.ATV.5.3.293
- 11. Moore JE Jr., Xu C, Glagov S, Zarins CK, Ku DN. Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atherosclerosis. 1994;110:225-240.10.1016/0021-9150(94)90207-0
- 12. Gambillara V, Chambaz C, Montorzi G, Roy S, Stergiopulos N, Silacci P. Plaque-prone hemodynamics impair endothelial function in pig carotid arteries. Am J Physiol Heart Circ Physiol. 2006;290:H2320-2328.10.1152/ajpheart.00486.2005
- 13. Cheng C, van Haperen R, de Waard M, et al. Shear stress affects the intracellular distribution of eNOS: direct demonstration by a novel in vivo technique. Blood. 2005;106:3691-3698.10.1182/blood-2005-06-2326
- 14. Buchanan JR Jr., Kleinstreuer C, Truskey GA, Lei M. Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction. Atherosclerosis. 1999;143:27-40.10.1016/S0021-9150(98)00264-0
- 15. Stone PH, Coskun AU, Kinlay S, et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation. 2003;108:438-44.10.1161/01.CIR.0000080882.35274.AD12860915
- 16. Wentzel JJ, Corti R, Fayad ZA, et al. Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J Am Coll Cardiol. 2005;45:846-854.10.1016/j.jacc.2004.12.02615766817
- 17. Chatzizisis YS, Jonas M, Coskun AU. Low endothelial shear stress (ESS) is responsible for the heterogeneity and severity of coronary atherosclerotic plaques: an in-vivo IVUS natural history study (abstr). Circulation. 2006;114:II23.
- 18. Chatzizisis YS, Jonas M, Coskun AU. Low endothelial shear stress (ESS) predicts the development of high-risk coronary atherosclerotic plaques: a correlative IVUS and histopathology natural history study (abstr). J Am Coll Cardiol. 2007;49:Suppl A:334A.
- 19. Chatzizisis YS, Jonas M, Coskun AU. Low endothelial shear stress (ESS) leads to expansive remodeling of atherosclerotic coronary subsegments: an in-vivo follow-up IVUS study (abstr). J Am Coll Cardiol. 2007;49:SupplA:335.
- 20. Cheng C, Tempel D, van Haperen R, et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. 2006;113:2744-2753.10.1161/CIRCULATIONAHA.105.59001816754802
- 21. Gambillara V, Montorzi G, Haziza-Pigeon C, Stergiopulos N, Silacci P. Arterial wall response to ex vivo exposure to oscillatory shear stress. J Vasc Res. 2005;42:535-544.10.1159/00008834316179795
- 22. Stone PH, Coskun AU, Kinlay S, et al. Regions of low endothelial shear stress are sites where coronary plaque progress and vascular remodeling occurs in humans: an in-vivo serial study. Eur Heart J. 2007:28:705-710.10.1093/eurheartj/ehl57517347172
- 23. Wentzel JJ, Janssen E, Vos J, et al. Extension of increased atherosclerotic wall thickness into high shear stress regions is associated with loss of compensatory remodeling. Circulation. 2003;108:17-23.10.1161/01.CIR.0000078637.21322.D312821552
- 24. Wentzel JJ, Kloet J, Andhyiswara I, et al. Shear-stress and wall-stress regulation of vascular remodeling after balloon angioplasty: effect of matrix metalloproteinase inhibition. Circulation. 2001;104:91-96.10.1161/01.CIR.104.1.9111435344
- 25. Nichols WW, O’Rourke MF. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. 5th edition. London: A Hodder Arnold Publication, 2005.
- 26. Slager CJ, Wentzel JJ, Gijsen FJ, et al. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat Clin Pract Cardiovasc Med. 2005;2:401-407.10.1038/ncpcardio0274
- 27. Munson BR, Young DF, Okiishi TH. Fundamentals of Fluid Mechanics. Canada: John Wiley & Sons, 1990.
- 28. Feldman CL, Ilegbusi OJ, Hu Z, Nesto R, Waxman S, Stone PH. Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: a methodology to predict progression of coronary atherosclerosis. Am Heart J. 2002;143:931-939.10.1067/mhj.2002.123118
- 29. MacIsaac AI, Thomas JD, Topol EJ. Toward the quiescent coronary plaque. J Am Coll Cardiol. 1993;22:1228-1241.10.1016/0735-1097(93)90442-4
- 30. Katranas SA, Kelekis AL, Antoniadis AP, Ziakas AG, Giannoglou GD. Differences in stress forces and geometry between left and right coronary artery: a pathophysiological aspect of atherosclerosis heterogeneity. Hellenic J Cardiol. 2015;56:217e223.
- 31. Wentzel JJ, Chatzizisis YS, Gijsen FJ, Giannoglou GD, Feldman CL, Stone PH. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc Res. 2012;96:234e243.10.1093/cvr/cvs21722752349
- 32. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49:2379e2393.10.1016/j.jacc.2007.02.05917599600
- 33. Kwak BR, Back M, Bochaton-Piallat ML, et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J. 2014;35:3013-3020.10.1093/eurheartj/ehu353481080625230814
- 34. Tousoulis D, Papageorgiou N, Synetos A, Stefanadis C. Assessing vulnerable plaque: is shear stress enough? Int J Cardiol. 2014; 172:e135-e138.10.1016/j.ijcard.2013.12.10824485228
- 35. Koskinas KC, Sukhova GK, Baker AB, et al. Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. Arterioscler Thromb Vasc Biol. 2013;33:1494-1504.10.1161/ATVBAHA.112.300827395449623640495
- 36. Chatzizisis YS, Baker AB, Sukhova GK, et al. Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress colocalize with coronary atheromata with thin fibrous caps in pigs. Circulation. 2011;123:621-630.10.1161/CIRCULATIONAHA.110.970038306607821282495
- 37. Koskinas KC, Feldman CL, Chatzizisis YS, et al. Natural history of experimental coronary atherosclerosis and vascular remodeling in relation to endothelial shear stress: a serial, in vivo intravascular ultrasound study. Circulation. 2010;121:2092-2101.10.1161/CIRCULATIONAHA.109.901678290286420439786
- 38. Xu Q. Disturbed flow-enhanced endothelial turnover in atherosclerosis. Trends Cardiovasc Med. 2009;19:191-195.10.1016/j.tcm.2009.12.00220211434
- 39. Quillard T, Araujo HA, Franck G, Shvartz E, Sukhova G, Libby P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J. 2015;36:1394-1404.10.1093/eurheartj/ehv044445828725755115
- 40. Cicha I, Worner A, Urschel K, et al. Carotid plaque vulnerability: a positive feedback between hemodynamic and biochemical mechanisms. Stroke. 2011;42:3502-3510.10.1161/STROKEAHA.111.62726521998063
- 41. Corban MT, Eshtehardi P, Suo J, et al. Combination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability. Atherosclerosis. 2014;232:271-276.10.1016/j.atherosclerosis.2013.11.04924468138
- 42. Eshtehardi P, McDaniel MC, Suo J, et al. Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J Am Heart Assoc. 2012;1:e002543.10.1161/JAHA.112.002543348735123130168
- 43. Samady H, Eshtehardi P, McDaniel MC, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 2011;124:779-788.10.1161/CIRCULATIONAHA.111.02182421788584
- 44. Otsuka F, Finn AV, Yazdani SK, Nakano M, Kolodgie FD, Virmani R. The importance of the endothelium in atherothrombosis and coronary stenting. Nat Rev Cardiol. 2012;9:439-453.10.1038/nrcardio.2012.6422614618
- 45. Bourantas CV, Papafaklis MI, Kotsia A, et al. Effect of the endothelial shear stress patterns on neointimal proliferation following drug-eluting bioresorbable vascular scaffold implantation: an optical coherence tomography study. JACC Cardiovasc Interv. 2014;7:315-324.10.1016/j.jcin.2013.05.03424529931
- 46. Wentzel JJ, Krams R, Schuurbiers JC, et al. Relationship between neointimal thickness and shear stress after wall stent implantation in human coronary arteries. Circulation. 2001;103:1740-1755.10.1161/01.CIR.103.13.1740
- 47. Brugaletta S, Heo JH, Garcia-Garcia HM, et al. Endothelial-dependent vasomotion in a coronary segment treated by ABSORB everolimus-eluting bioresorbable vascular scaffold system is related to plaque composition at the time of bioresorption of the polymer: indirect finding of vascular reparative therapy? Eur Heart J. 2012;33:1325-1333.10.1093/eurheartj/ehr466
- 48. Papafaklis MI, Bourantas CV, Theodorakis PE, et al. The effect of shear stress on neointimal response following sirolimus and paclitaxel-eluting stent implantation compared with bare-metal stents in humans. JACC Cardiovasc Interv. 2010;3:1181-1189.10.1016/j.jcin.2010.08.01821087755
- 49. Nikolsky E, Mehran R, Dangas G, et al. Development and validation of a prognostic risk score for major bleeding in patients undergoing percutaneous coronary intervention via the femoral approach. Eur Heart J. 2007;28:1936-1945.10.1093/eurheartj/ehm194
- 50. Van Werkum JW, Heestermans AA, Zomer AC, et al. Predictors of coronary stent thrombosis: The Dutch stent thrombosis registry. J Am Coll Cardiol. 2009;53:1399-1409.10.1016/j.jacc.2008.12.055
- 51. Spuentrup E, Ruebben A, Mahnken A, et al. Artifact-free coronary magnetic resonance angiography an coronary vessel wall imaging in the presence of a new, metallic coronary magnetic resonance imaging stent. Circulation. 2005;111:1019-1026.10.1161/01.CIR.0000156462.97532.8F
- 52. Di Mario C, Borgia F. Assimilating the current clinical data of fully bioabsorbable stents. EuroIntervention. 2009;5:F103-F108.10.4244/EIJV5IFA18
- 53. Stefanini GG, Kalesan B, Serruys PW, et al. Long-term clinical outcomes of biodegradable polymer biolimus-eluting stents versus durable polymer sirolimus-eluting stents in patients with coronary artery disease (LEADERS): 4 year follow-up of a randomised non-inferiority trial. Lancet. 2011;378:1940-1948.10.1016/S0140-6736(11)61672-3
- 54. Yamaji K, Kimura T, Morimoto T, et al. Very long-term (15 to 23 years) outcomes of successful balloon angioplasty com- pared with bare metal coronary stenting. J Am Heart Assoc. 2012;1:e004085.10.1161/JAHA.112.004085354161923316303
- 55. Brugaletta S, Gogas BD, Garcia-Garcia HM, et al. Vascular compliance changes of the coronary vessel wall after bioresorbable vascular scaffold implantation in the treated and adjacent segments. Circ J. 2012;76:1616-1623.10.1253/circj.CJ-11-1416
- 56. Gomez-Lara J, Garcia-Garcia HM, Onuma Y, et al. A comparison of the conformability of everolimus-eluting bioresorbable vascular scaffolds to metal platform coronary stents. JACC Cardiovasc Interv. 2010;3:1190-1198.10.1016/j.jcin.2010.07.01621087756
- 57. Ormiston JA, Serruys PW, Onuma Y, et al. First serial assessment at 6 months and 2 years of the second generation of absorb everolimuseluting bioresorbable vascular scaffold: a multi-imaging modality study. Circ Cardiovasc Interv. 2012;5:620-632.10.1161/CIRCINTERVENTIONS.112.97154923048057
- 58. Bourantas CV, Zhang Y, Farooq V, Garcia-Garcia HM, Onuma Y, Serruys PW. Bioresorbable scaffolds: current evidence and ongoing clinical trials. Curr Cardiol Rep. 2012;14:626-634.10.1007/s11886-012-0295-5343278822810889
- 59. Nakazawa G, Ladich E, Finn AV, Virmani R. Pathophysiology of vascular healing and stent mediated arterial injury. EuroIntervention. 2008;4:C7-C10.
- 60. Nakazawa G, Otsuka F, Nakano M, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol. 2011;57:1314-1322.10.1016/j.jacc.2011.01.011309331021376502
- 61. Oberhauser JP, Hossainy S, Rapoza RJ. Design principles and performance of bioresorbable polymeric vascular scaffolds. EuroIntervention. 2009;5: F15-F22.10.4244/EIJV5IFA322100671
- 62. Iqbal J, Sumaya W, Tatman V, et al. Incidence and predictors of stent thrombosis: a single-centre study of 5,833 consecutive patients undergoing coronary artery stenting. EuroIntervention. 2013;9:62-69.10.4244/EIJV9I1A1023685296
- 63. Onuma Y, Serruys PW. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation. 2011;123:779-797.10.1161/CIRCULATIONAHA.110.971606
- 64. Bourantas CV, Raber L, Zaugg S, et al. Impact of local endothelial shear stress on neointima and plaque following stent implantation in patients with ST-elevation myocardial infarction: A subgroup-analysis of the COMFORTABLE AMI-IBIS 4 trial. Int J Cardiol. 2015;186:178-85.10.1016/j.ijcard.2015.03.16025828109
- 65. Gyongyosi M, Yang P, Khorsand A, Glogar D. Longitudinal straightening effect of stents is an additional predictor for major adverse cardiac events. Austrian Wiktor Stent Study Group and European Paragon Stent Investigators. J Am Coll Cardiol. 2000;35:1580-1589.10.1016/S0735-1097(00)00570-2
- 66. Gomez-Lara J, Brugaletta S, Farooq V, et al. Angiographic geometric changes of the lumen arterial wall after bioresorbable vascular scaffolds and metallic platform stents at 1-year follow-up. JACC Cardiovasc Interv. 2011;4:789-799.10.1016/j.jcin.2011.04.00921777888
- 67. Bourantas CV, Papafaklis MI, Lakkas L, et al. Fusion of optical coherence tomographic and angiographic data for more accurate evaluation of the endothelial shear stress patterns and neointimal distribution after bioresorbable scaffold implantation: comparison with intravascular ultrasound-derived reconstructions. Int J Cardiovasc Imaging. 2014;30:485-494.10.1007/s10554-014-0374-324458955
- 68. Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus- eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J. 2015;36:3332-3342.10.1093/eurheartj/ehv43526330419
- 69. Ellis SG, Kereiakes DJ, Metzger DC, et al. Investigators AI. Everolimuseluting bioresorbable scaffolds for coronary artery disease. N Engl J Med. 2015;373:1905-1915.10.1056/NEJMoa150903826457558
- 70. Wykrzykowska JJ, Kraak RP, Hofma SH, et al. Investigators A. Bioresorbable Scaffolds versus Metallic Stents in Routine PCI. N Engl J Med. 2017;376:2319-2328.10.1056/NEJMoa161495428402237
- 71. Collet C, Asano T, Miyazaki Y, et al. Late thrombotic events after bioresorbable scaffold implantation: a systematic review and meta-analysis of randomized clinical trials. Eur Heart J. 2017;38:2559-2566.10.1093/eurheartj/ehx15528430908
- 72. Otsuka F, Pacheco E, Perkins LE, et al. Long-term safety of an everolimuseluting bioresorbable vascular scaffold and the cobalt-chromium XIENCE V stent in a porcine coronary artery model. Circ Cardiovasc Interv. 2014;7:330-342.10.1161/CIRCINTERVENTIONS.113.00099024895447
- 73. Raber L, Brugaletta S, Yamaji K, et al. Very late scaffold thrombosis: intracoronary imaging and histopathological and spectroscopic findings. J Am Coll Cardiol. 2015;66:1901-1914.10.1016/j.jacc.2015.08.85326493663
- 74. Finn AV, Nakazawa G, Joner M, et al. Vascular responses to drug eluting stents: Importance of delayed healing. Arterioscler Thromb Vasc Biol. 2007;27:1500-1510.10.1161/ATVBAHA.107.14422017510464
- 75. Foin N, Gutierrez-Chico JL, Nakatani S, et al. Incomplete stent apposition causes high shear flow disturbances and delay in neointimal coverage as a function of strut to wall detachment distance: implications for the management of incomplete stent apposition. Circ Cardiovasc Interv. 2014;7:180-189.10.1161/CIRCINTERVENTIONS.113.00093124642998
- 76. Holme PA, Orvim U, Hamers MJAG, et al. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol. 1997;17:646-653.10.1161/01.ATV.17.4.646
- 77. Martorell J, Santoma P, Kolandaivelu K, et al. Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations. Cardiovasc Res. 2014;103:37-46.10.1093/cvr/cvu124467088424841070
- 78. Nam D, Ni CW, Rezvan A, et al. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol. 2009;297:H1535-H1543.10.1152/ajpheart.00510.2009277076419684185
- 79. Bark DLJr, Ku DN. Wall shear over high degree stenoses pertinent to atherothrombosis. J Biomechanics. 2010;43:2970-2977.10.1016/j.jbiomech.2010.07.01120728892
- 80. Bark DL, Para AN, Ku DN. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnol Bioeng. 2012;109:2642-2650.10.1002/bit.2453722539078
- 81. Fukumoto Y, Hiro T, Fujii T, et al. Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution. J Am Coll Cardiol. 2008;51:645-650.10.1016/j.jacc.2007.10.03018261684
- 82. Brugaletta S, Radu MD, Garcia-Garcia HM, et al. Circumferential evaluation of the neointima by optical coherence tomography after ABSORB bioresorbable vascular scaffold implantation: can the scaffold cap the plaque? Atherosclerosis. 2012;221:106-112.10.1016/j.atherosclerosis.2011.12.008
- 83. Lane JP, Perkins LE, Sheehy AJ, et al. Lumen gain and restoration of pulsatility after implantation of a bioresorbable vascular scaffold in porcine coronary arteries. JACC Cardiovasc Interv. 2014;7:688-695.10.1016/j.jcin.2013.11.02424835327
- 84. Tateishi H, Suwannasom P, Sotomi Y, et al. investigators of the ABSORB Cohort B study. Edge Vascular Response After Resorption of the Everolimus-Eluting Bioresorbable Vascular Scaffold – A 5-Year Serial Optical Coherence Tomography Study. Circ J. 2016;80:1131-41.10.1253/circj.CJ-15-132526936236
- 85. Tamburino C, Latib A, van Geuns RJ, et al. Contemporary practice and technical aspects in coronary intervention with bioresorbable scaffolds: a European perspective. EuroIntervention. 2015;11:45-52.10.4244/EIJY15M01_0525599676