Have a personal or library account? Click to login
Biofilm Inhibition: Compounds with Antibacterial Effects Cover

References

  1. 1. Bryers JD. Medical biofilms. Biotechnology and Bioengineering. 2008;100:1-18.10.1002/bit.21838270631218366134
  2. 2. Michel V, Doi Y, Hellwich K, et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry. 2012;8:377-410.10.1351/PAC-REC-10-12-04
  3. 3. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology. 2004;2:95-108.10.1038/nrmicro82115040259
  4. 4. Wu H, Moser C, Wang HZ, et al. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015;23;7:1-7.10.1038/ijos.2014.65481753325504208
  5. 5. Auler ME, Morreira D, Rodrigues FF, et al. Biofilm formation on intrauterine devices in patients with recurrent vulvovaginal candidiasis. Medical Mycology. 2009;48:211-216.10.3109/1369378090285662620055746
  6. 6. Ciofu O, Rojo-Molinero E, Macià MD, et al. Antibiotic treatment of biofilm infections. APMIS. 2017;125:304-319.10.1111/apm.1267328407419
  7. 7. Rabin N, Zheng Y, Opoku-Temeng C, et al. Agents that inhibit bacterial biofilm formation. Future Med Chem. 2015;7:647-671.10.4155/fmc.15.725921403
  8. 8. Worlitzsch D, Tarran R, Ulrich M, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest. 2002;109:317-325.10.1172/JCI0213870
  9. 9. Jensen PO, Briales A, Brochmann RP, et al. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms. Pathog Dis. 2014;70:440-443.10.1111/2049-632X.1212024376174
  10. 10. Cao B, Christophersen L, Thomsen K, et al. Antibiotic penetration and bacterial killing in a Pseudomonas aeruginosa biofilm model. J Antimicrob Chemother. 2015;70:2057-2063.10.1093/jac/dkv05825786481
  11. 11. Kadurugamuwa JL, Sin L, Albert E, et al. Direct continuous method for monitoring biofilm infection in a mouse model. Infect Immun. 2003;71:882-890.10.1128/IAI.71.2.882-890.200314536212540570
  12. 12. Rupp ME, Ulphani JS, Fey PD, et al. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun. 1999;67:2627-2632.10.1128/IAI.67.5.2627-2632.199911601510225932
  13. 13. Hirano L, Bayer AS. Beta-Lactam-beta-lactamase-inhibitor combinations are active in experimental endocarditis caused by beta-lactamase-producing oxacillin-resistant staphylococci. Antimicrob Agents Chemother. 1991;35:685-690.10.1128/AAC.35.4.6852450792069374
  14. 14. Roche ED, Renick PJ, Tetens SP, et al. Increasing the presence of biofilm and healing delay in a porcine model of MRSA-infected wounds. Wound Repair Regen. 2012;20:537-543.10.1111/j.1524-475X.2012.00808.x22672311
  15. 15. Johansen HK, Høiby N. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect Immun. 2005;73:2504-2514.10.1128/IAI.73.4.2504-2514.2005108739915784597
  16. 16. de Lima Pimenta A, Chiaradia-Delatorre LD, Mascarello A, et al. Synthetic organic compounds with potential for bacterial biofilm inhibition, a path for the identification of compounds interfering with quorum sensing. Int J Antimicrob Agents. 2013;42:519-523.10.1016/j.ijantimicag.2013.07.00624016798
  17. 17. Balaban N, Cirioni O, Giacometti A, et al. Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrob Agents Chemother. 2007;51:2226-2229.10.1128/AAC.01097-06189138317371825
  18. 18. Francolini I, Norris P, Piozzi A, et al. Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother. 2004;48:4360-4365.10.1128/AAC.48.11.4360-4365.200452540515504865
  19. 19. Rasamiravaka T, Labtani Q, Duez P, et al. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int. 2015:759348.10.1155/2015/759348438329825866808
  20. 20. Rasmussen TB, Skindersoe ME, Bjarnsholt T, et al. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology. 2005;151:1325-1340.10.1099/mic.0.27715-015870443
  21. 21. Roy V, Meyer MT, Smith JA, et al. AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms. Appl Microbiol Biotechnol. 2013;97:2627-2638.10.1007/s00253-012-4404-623053069
  22. 22. Brackman G, Cos P, Maes L, et al. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother. 2001;55:2655-2661.10.1128/AAC.00045-11310140921422204
  23. 23. Zeng X, Liu X, Bian J, et al. Synergistic effect of 14-alpha-lipoyl andrographolide and various antibiotics on the formation of biofilms and production of exopolysaccharide and pyocyanin by Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55:3015-3017.10.1128/AAC.00575-10310138821422201
  24. 24. Jakobsen TH, van Gennip M, Phipps RK, et al. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother. 2012;56:2314-2325.10.1128/AAC.05919-11334666922314537
  25. 25. Yang JY, Della-Fera MA, Nelson-Dooley C, et al. Molecular mechanisms of apoptosis induced by ajoene in 3T3-L1 adipocytes. Obesity. 2006;14:388-397.10.1038/oby.2006.5216648609
  26. 26. Jakobsen TH, Warming AN, Vejborg RM, et al. A broad range quorum sensing inhibitor working through sRNA inhibition. Sci Rep. 2017;7:9857.10.1038/s41598-017-09886-8557534628851971
  27. 27. Rendueles O, Kaplan JB, Ghigo JM. Antibiofilm polysaccharides. Environmental Microbiol. 2013;15:334-346.10.1111/j.1462-2920.2012.02810.x350268122730907
  28. 28. Roy R, Tiwari M, Donelli G, et al. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9:522-554.10.1080/21505594.2017.1313372595547228362216
  29. 29. Durig A, Kouskoumvekaki I, Vejborg RM, et al. Chemoinformatics-assisted development of new anti-biofilm compounds. Applied Microbiol Biotechnol. 2010;87:309-317.10.1007/s00253-010-2471-020204615
  30. 30. Ojha AK, Baughn AD, Sambandan D, et al. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol. 2008;69:164-174.10.1111/j.1365-2958.2008.06274.x261518918466296
  31. 31. Artini M, Romano C, Manzoli L, et al. Staphylococcal IgM ELISA for the detection of periprosthetic joint infections. J Clin Microbiol. 2011;49:423-425.10.1128/JCM.01836-10302041521068292
DOI: https://doi.org/10.2478/jim-2018-0042 | Journal eISSN: 2501-8132 | Journal ISSN: 2501-5974
Language: English
Page range: 234 - 238
Submitted on: Jul 31, 2018
Accepted on: Sep 17, 2018
Published on: Feb 1, 2019
Published by: Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Andrei-Marian Feier, Andrei-Constantin Ioanovici, Radu-Cristian Ionescu, Tamas Toth, Octav-Marius Russu, published by Asociatia Transilvana de Terapie Transvasculara si Transplant KARDIOMED
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.