Have a personal or library account? Click to login
Benford’s Law in Forensic Analysis of Registered Turnover Cover

Benford’s Law in Forensic Analysis of Registered Turnover

By: Edin Glogić and  Zoran Jasak  
Open Access
|Jul 2021

References

  1. Konheim, Alan G. (1965). Mantissa Distributions. Mathematics of Computation, 19(89), 143–144. Retrieved from URL: www.jstor.org/stable/2004111 (Accessed 13.4.2021.)10.1090/S0025-5718-1965-0175159-1
  2. Berger, A.; . Hill, T. P. (2011). A basic theory of Benford’s Law, Probability Surveys, 8, 1-126, DOI: 10.1214/11-PS17510.1214/11-PS175
  3. Iudica, F. (2012). Benford’s Law: Mathematical Properties and Forensic Accounting Applications [Bachelor’s Degree Thesis], LUISS Guido Carli, Facoltà di Impresa e Management, Cattedra di Matematica, Anno Accademico 2011/2012, 56 p.
  4. Benford, F. A. (1938). The Law of Anomalous Numbers, Proceedings of the American Philosophical Society, 78(4), 551-572.
  5. Hosmer. D., Lemeshow S. (2000). Applied Logistic Regression (2nd Edition). NY: John Wiley & Sons, p. 148
  6. Csiszar, I., Shields, P. C. (2004). Information Theory and Statistics: A Tutorial. Foundations and Trends™ in Communications and Information Theory, 1(4), 417-528.10.1561/0100000004
  7. Jasak Z. (2016). Benford’s Law and Hosmer-Lemeshow test. Journal of Mathematical Sciences: Advances and Applications, 41, 57-73.
  8. Jasak Z. (2015). Benford’s law and arithmetic sequences. Journal of Mathematical Sciences: Advances and Applications, 32, 1 – 16.
  9. Hoey, J. (2012). The Two-Way Likelihood Ratio (G) Test and Comparison to Two-Way χ² Test, arXiv:1206.4881v2 [stat.ME].
  10. Shao, L., Ma BQ. (2010). First-Digit Law in Nonextensive Statistics. Physical review. E, Statistical, nonlinear, and soft matter physics, 82(4). arXiv:1010.2699v1 [physics.data-an].
  11. Nigrini, M. (2011). Forensic Analytics - Methods and Techniques for Forensic Accounting Investigations. Hoboken, N.J.: John Wiley & Sons, 144 – 146.
  12. Sharpe, M. J. (2006). Limit Laws and Mantissa Distributions. Probability and Mathematical Statistics, 24(1), 175-185.
  13. Harremoes, P., Tusnady, G. (2012). Information Divergence is more χ²-distributed than the χ²-statistics. arXiv:1202.1125v2 [math.ST].
  14. Wong, S. C. Y. (2003). Testing Benford‘s Law with the First Two Significant Digits. [Masterr’s Thesis]). University of Victoria, Department of Mathematics and Statistics. Retrieved from URL: https://studylib.net/doc/18033613/testing-benford-s-law-with-the-first-two-significant-digits (Accessed 15.4.2021.)
  15. Newcomb, S. (1881). Note on the Frequency of Use of the Different Digits in Natural Numbers, American Jounal of Mathematics, 4 (1), 39-40.10.2307/2369148
  16. Miller, S. J., Nigrini, M. J. (2008). Order Statistics and Benford’s Law, Research article, Hindawi Publishing Corporation, International Journal of Mathematics i Mathematical Sciences, 2008, Article ID 382948, doi:10.1155/2008/382948.10.1155/2008/382948
  17. Dunning, T. (1993). Accurate Methods for the Statistics of Surprise and Coincidence, Computational linguistics, 19(1), 61-74.
  18. Hill, T. P. (1995). A Statistical Derivation of the Significant-Digit Law, Statistical Science, 10(4), 354-363.10.1214/ss/1177009869
  19. Kozlov, V. V. (2005). Vesovye Srednie, ravnomyernoe raspredelyenie and strogaya ergodichnost, Uspjehi matematicheskih nauk, tom 60, ed. 6(366), Nov. - Dec. 2005.
  20. Hűrlimann, W. (2009). Generalizing Benford’s Law Using Power Laws: Application to Integer Sequences, Journal of Mathematics i Mathematical Science, 2009, Article ID 970284, 10 p., doi:10.1155/2009/97028410.1155/2009/970284
Language: English
Page range: 50 - 60
Submitted on: May 4, 2021
Accepted on: May 30, 2021
Published on: Jul 17, 2021
Published by: University of Sarajevo
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Edin Glogić, Zoran Jasak, published by University of Sarajevo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.