Have a personal or library account? Click to login
Numerical and experimental investigation of PZT droplet ejection under pulsed voltage for electrohydrodynamic printing Cover

Numerical and experimental investigation of PZT droplet ejection under pulsed voltage for electrohydrodynamic printing

By: Xue Yang,  Mingchao Bi,  Zhifu Yin and  Xiao Xu  
Open Access
|Dec 2025

References

  1. Q.C. Zhang, X. Wang, Z.Y. Mao, A.B. Yang, S.Z. Niu, W. Gao and M. Wang, “Ferroelectric lead zirconate titanate-modified separator enabling stable anode-free lithium metal batteries via dual regulation of Li plus flux and anion-enriched solid electrolyte interphase”, Journal of Colloid and Interface Science, vol.703, no. pp. 139195, 2026
  2. K. Cao, Q.C. Zheng, H. Chen, B. Xie, N. Deng, H. Shang, Y. Lu and H.K. Xie, “A tip-tilt-piston piezoelectric micromirror with double-S shaped actuators based on sputtered PZT”, Sensors and Actuators a-Physical, vol.391, no. pp. 116666, 2025
  3. W.G. Lee and Y.J. Kwon, “Preparation of ferroelectric PZT thin films by plasma enhanced chemical vapor deposition using metalorganic precursors”, Journal of Industrial and Engineering Chemistry, vol.14, no. 1, pp. 89-93, 2008
  4. D.M. Ai, D.L. Zhang and H.P. Zhu, “A damage localization approach for concrete structure using discrete wavelet transform of electromechanical admittance of bonded PZT transducers”, Mechanical Systems and Signal Processing, vol.218, no. pp. 111531, 2024
  5. V.C. Nguyen, M.Q. Le, A. Fimbel, S. Bernadet, Y. Hebrard, J.F. Mogniotte, J.F. Capsal and P.J. Cottinet, “Evaluation of electromechanical characteristics for screen printed piezoelectric sensor-based Pu/PZT composite”. Electroactive Polymer Actuators and Devices (Eapad) Xxiv, Long Beach, USA, vol.12042, no., pp. 120420X, 2022.
  6. K. Li, L. Sun, X.C. Yang, C. Wang, M.Z. Li, Z.J. Qiao and D.B. Ruan, “3D printing piezoelectric nanostructures via synergistic electrohydrodynamic and in-situ electrodeformation for highly sensitive sensing”, Chemical Engineering Journal, vol.519, no. pp. 165333, 2025
  7. K. Li, Y.X. Wang, M.Z. Li, J.B. Li, F. Du, C. Wang, J.Y. Fang, L. Sun and X.Y. Wang, “3D printed ultrahigh aspect ratio lead zirconate titanate (PZT) nanostructures for nano-Newton force sensing”, Journal of the European Ceramic Society, vol.44, no. 7, pp. 4646-4656, 2024
  8. H.T. Qin, J.Y. Dong and Y.S. Lee, “AC-pulse modulated electrohydrodynamic jet printing and electroless copper deposition for conductive microscale patterning on flexible insulating substrates”, Robotics and Computer-Integrated Manufacturing, vol.43, no. pp. 179-187, 2017
  9. O. Yogi, T. Kawakami, M. Yamauchi, J.Y. Ye and M. Ishikawa, “On-demand droplet spotter for preparing pico-to femtoliter droplets on surfaces”, Analytical Chemistry, vol.73, no. 8, pp. 1896-1902, 2001
  10. Y. Huang, N. Bu, Y. Duan, Y. Pan, H. Liu, Z. Yin and Y. Xiong, “Electrohydrodynamic direct-writing”, Nanoscale, vol.5, no. 24, pp. 12007-12017, 2013
  11. S.-Y. Kim, K. Kim, Y. Hwang, J. Park, J. Jang, Y. Nam, Y. Kang, M. Kim, H. Park and Z. Lee, “High-resolution electrohydro-dynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance”, Nanoscale, vol.8, no. 39, pp. 17113-17121, 2016
  12. Y. Wu, B. Wu, S. Vijayavenkataraman, Y. San Wong and J.Y.H. Fuh, “Crimped fiber with controllable patterns fabricated via electrohydrodynamic jet printing”, Materials & Design, vol.131, no. pp. 384-393, 2017
  13. K. Li, F. Du, J.Y. Fang, L. Sun, M.Z. Li, Y.X. Wang, C. Wang, X.Y. Wang, J.B. Li, Z.J. Qiao and D.B. Ruan, “Printed bioinspired piezoelectric nano-hair for ultrahigh sensitive airflow detection”, Chemical Engineering Journal, vol.490, no. pp. 151570, 2024
  14. K. Li, S.F. Fan, X.Y. Wang and Y. Lu, “3D nanoprinting piezoceramic with large elastic deformation and high piezoelectricity”, International Journal of Extreme Manufacturing, vol.7, no. 4, pp. 045006, 2025
  15. D. Wang, W. Zha, L. Feng, Q. Ma, X. Liu, N. Yang, Z. Xu, X. Zhao, J. Liang and T. Ren, “Electrohydrodynamic jet printing and a preliminary electrochemistry test of graphene micro-scale electrodes”, Journal of Micromechanics and Microengineering, vol.26, no. 4, pp. 045010, 2016
  16. A. Ganan-Calvo, J. Davila and A. Barrero, “Current and droplet size in the electrospraying of liquids. Scaling laws”, Journal of Aerosol Science, vol.28, no. 2, pp. 249-275, 1997
  17. J. Park, M. Hardy, S. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferreira and J.A. Rogers, “High-resolution electrohydrodynamic jet printing”, Nature Materials, vol.6, no. 10, pp. 782-789, 2007
  18. J. Li, “Formation and stabilization of an EHD jet from a nozzle with an inserted non-conductive fibre”, Journal of Aerosol Science, vol.36, no. 3, pp. 373-386, 2005
  19. M. Paine, M. Alexander, K. Smith, M. Wang and J. Stark, “Controlled electrospray pulsation for deposition of femtoliter fluid droplets onto surfaces”, Journal of Aerosol Science, vol.38, no. 3, pp. 315-324, 2007
  20. O. Lastow and W. Balachandran, “Numerical simulation of electrohydrodynamic (EHD) atomization”, Journal of Electrostatics, vol.64, no. 12, pp. 850-859, 2006
  21. X. Wu, R.D. Oleschuk and N.M. Cann, “Characterization of microstructured fibre emitters: in pursuit of improved nano electrospray ionization performance”, Analyst, vol.137, no. 18, pp. 4150-4161, 2012
  22. R.T. Collins, J.J. Jones, M.T. Harris and O.A. Basaran, “Electrohydrodynamic tip streaming and emission of charged drops from liquid cones”, Nature Physics, vol.4, no. 2, pp. 149-154, 2008
  23. R.T. Collins, K. Sambath, M.T. Harris and O.A. Basaran, “Universal scaling laws for the disintegration of electrified drops”, Proceedings of the National Academy of Sciences of the United States of America, vol.110, no. 13, pp. 4905-4910, 2013
  24. X. Yang, S. Wang, Z. Yin and W. Hu, “Numerical study on the electrohydrodynamic jet printing”, Journal of Micro and Nano-Manufacturing, vol.9, no. 1, pp. 011001, 2021
  25. W. Wu, X. Yang, B. Zhang, Z. Yin and B. Jia, “The study on electric field distribution and droplet trajectory during electrohydrodynamic jet printing”, Microsystem Technologies, vol.27, no. 7, pp. 2745-2750, 2021
  26. X. Yang, R. Liu, L. Li, Z. Yin, K. Chen and D.F. Wang, “The study of electrohydrodynamic printing by numerical simulation”, Journal of Electrical Engineering, vol.71, no. 6, pp. 413-418, 2020
  27. Y. Pan and L. Zeng, “Simulation and Validation of Droplet Generation Process for Revealing Three Design Constraints in Electrohydrodynamic Jet Printing”, Micromachines, vol.10, no. 2, pp. 94, 2019
  28. J.S. Lee, S.Y. Kim, Y.J. Kim, J. Park, Y. Kim, J. Hwang and Y.J. Kim, “Design and evaluation of a silicon based multi-nozzle for addressable jetting using a controlled flow rate in electrohydrodynamic jet printing”, Applied Physics Letters, vol.93, no. 24, pp. 243114, 2008
  29. J.R. Melcher and G.I. Taylor, “Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses”, Annual Review of Fluid Mechanics, vol.1, no. 1, pp. 111-146, 1969
DOI: https://doi.org/10.2478/jee-2025-0060 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 574 - 585
Submitted on: Sep 12, 2025
Published on: Dec 6, 2025
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Xue Yang, Mingchao Bi, Zhifu Yin, Xiao Xu, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.