Have a personal or library account? Click to login

From public to clinical data: External validation of an explainable MedViT model for retinal OCT images

Open Access
|Oct 2025

References

  1. A. H. Kashani, C. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Progress in Retinal and Eye Research, vol. 60, pp. 66–100, 2017. doi:10.1016/j.preteyeres.2017.07.002.
  2. A. P. Voigt, N. K. Mullin, S. S. Whitmore, A. P. DeLuca, E. R. Burnight, X. Liu, B. A. Tucker, T. E. Scheetz, E. M. Stone, and R. F. Mullins, “Human photoreceptor cells from different macular subregions have distinct transcriptional profiles,” Human Molecular Genetics, vol. 30, no. 16, pp. 1543–1558, 2021. doi:10.1093/hmg/ddab140.
  3. O. N. Manzari, H. Ahmadabadi, H. Kashiani, S. B. Shokouhi, and A. Ayatollahi, “MedViT: A robust vision transformer for generalized medical image classification,” Computers in Biology and Medicine, vol. 157, p. 106791, 2023. doi:10.1016/j.compbiomed.2023.106791.
  4. A. Chaddad, J. Peng, J. Xu, and A. Bouridane, “Survey of Explainable AI Techniques in Healthcare,” Sensors, vol. 23, no. 2, p. 634, 2023. doi: 10.3390/s23020634.
  5. Z. Sadeghi, R. Alizadehsani, M. A. CIFCI, S. Kausar, R. Rehman, P. Mahanta, P. K. Bora, A. Almasri, R. S. Alkhawaldeh, S. Hussain, B. Alatas, A. Shoeibi, H. Moosaei, M. Hladík, S. Nahavandi, and P. M. Pardalos, “A review of Explainable Artificial Intelligence in healthcare,” Comput. Electr. Eng., vol. 118, p. 109370, Aug. 2024. doi: 10.1016/j.compeleceng.2024.109370.
  6. T. F. Tan, P. Dai, X. Zhang, L. Jin, S. Poh, D. Hong, J. Lim, G. Lim, Z. L. Teo, N. Liu, and D. S. W. Ting, “Explainable artificial intelligence in ophthalmology,” Current Opinion in Ophthalmology, vol. 34, no. 5, pp. 422–430, 2023. doi:10.1097/ICU.0000000000000983.
  7. O. S. Naren, “Retinal OCT Image Classification – C8,” Kaggle, 2024. doi:10.34740/KAGGLE/DSV/9595300.
  8. M. Subramanian, K. Shanmugavadivel, O. S. Naren, K. Premkumar, and K. Rankish, “Classification of retinal OCT images using deep learning,” in Proc. 2022 Int. Conf. Computer Communication and Informatics (ICCCI), 2022, pp. 1–7. doi:10.1109/ICCCI54379.2022.9740985.
  9. K. Karthik and M. Mahadevappa, “Convolution neural networks for optical coherence tomography (OCT) image classification,” Biomedical Signal Processing and Control, vol. 79, p. 104176, 2023. doi:10.1016/j.bspc.2022.104176.
  10. D. S. Kermany et al., “Identifying medical diagnoses and treatable diseases by image-based deep learning,” Cell, vol. 172, no. 5, pp. 1122–1131.e9, 2018. doi:10.1016/j.cell.2018.02.010.
  11. Ş. Aykat and S. Senan, “Using machine learning to detect different eye diseases from OCT images,” International Journal of Computational and Experimental Science and Engineering, vol. 9, pp. 62–67, 2023. doi:10.22399/ijcesen.1297655.
  12. J. Jingzhen et al., “An interpretable transformer network for the retinal disease classification using optical coherence tomography,” Scientific Reports, vol. 13, no. 1, p. 3637, 2023. doi:10.1038/s41598-023-30853-z.
  13. I. Khalil, A. Mehmood, H. Kim, and J. Kim, “OCTNet: A modified multi-scale attention feature fusion network with InceptionV3 for retinal OCT image classification,” Mathematics, vol. 12, no. 19, p. 3003, 2024. doi:10.3390/math12193003.
  14. P. Gholami, P. Roy, M. K. Parthasarathy, and V. Lakshminarayanan, “OCTID: Optical coherence tomography image database,” Computers & Electrical Engineering, vol. 81, p. 106532, 2020. doi:10.1016/j.compeleceng.2019.106532.
  15. A. C. Bovik, “Basic gray-level image processing,” in Handbook of Image and Video Processing, 2nd ed., A. C. Bovik, Ed. Burlington, MA, USA: Academic Press, 2005, pp. 21–37. doi:10.1016/B978-012119792-6/50066-8.
  16. A. Buades, B. Coll, and J.-M. Morel, “Non-local means denoising,” Image Processing On Line, vol. 1, pp. 208–212, 2011. doi:10.5201/ipol.2011.bcm_nlm.
  17. D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan, “AugMix: A simple data processing method to improve robustness and uncertainty,” arXiv preprint arXiv:1912.02781, 2020. [Online]. Available: https://arxiv.org/abs/1912.02781.
  18. J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni, “MedMNIST v2 – A large-scale lightweight benchmark for 2D and 3D biomedical image classification,” Scientific Data, vol. 10, no. 1, p. 41, Jan. 2023. doi:10.1038/s41597-022-01721-8.
  19. J. Deng et al., “ImageNet: A large-scale hierarchical image database,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2009, pp. 248–255. doi:10.1109/CVPR.2009.5206848.
  20. J. Gildenblat and contributors, “PyTorch library for CAM methods,” GitHub repository, 2021. [Online]. Available: https://github.com/jacobgil/pytorch-grad-cam.
DOI: https://doi.org/10.2478/jee-2025-0050 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 476 - 484
Submitted on: Jul 21, 2025
Published on: Oct 16, 2025
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Samuel Gibala, Veronika Kurilova, Milos Oravec, Jarmila Pavlovicova, Jana Stefanickova, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.