Have a personal or library account? Click to login

High gain low noise figure LNA circuit employing variable gain amplifier

Open Access
|Oct 2025

References

  1. J.-C. Kao, P. Chen, P.-C. Huang and H. Wang, “A Novel Distributed Amplifier with High Gain, Low Noise, and High Output Power in 0.18-μm CMOS Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1533-1542, 2013, doi: 10.1109/TMTT.2013.2247048.
  2. L. Wu, H. F. Leung and H. C. Luong, “Design and Analysis of CMOS LNAs with Transformer Feedback for Wideband Input Matching and Noise Cancellation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 6, pp. 1626-1635, 2017, doi: 10.1109/TCSI.2017.2649844.
  3. H. Yu, Y. Chen, C. C. Boon, P. -I. Mak and R. P. Martins, “A 0.096-mm 2 1 –20-GHz Triple-Path Noise- Canceling Common-Gate Common-Source LNA With Dual Complementary pMOS–nMOS Configuration,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 1, pp. 144-159, 2020, doi: 10.1109/TMTT.2019.2949796
  4. B. Razavi, RF Microelectronics, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2011.
  5. V. Bhagavatula, M. Taghivand and J. C. Rudell, “A Compact 77% Fractional Bandwidth CMOS Band-Pass Distributed Amplifier With Mirror-Symmetric Norton Transforms,” IEEE Journal of Solid-State Circuits, vol. 50, no. 5, pp. 1085-1093, 2015, doi: 10.1109/JSSC.2015.2408322.
  6. S. Kong, H.-D. Lee, S. Jang, J. Park, K.-S. Kim and K.-C. Lee, “A 28-GHz CMOS LNA with Stability-Enhanced Gm-Boosting Technique Using Transformers,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, pp. 7-10, 2019, doi: 10.1109/RFIC.2019.8701753.
  7. Y.-S. Lin, C.-C. Wang and J.-H. Lee, “A 9.96 mW 3.24±0.5 dB NF 1.9∼22.5 GHz wideband low-noise amplifier using 90 nm CMOS technology,” IEEE Radio and Wireless Symposium (RWS), Newport Beach, CA, USA, pp. 208-210, 2014, doi: 10.1109/RWS.2014.6830072.
  8. P. Qin and Q. Xue, “Design of Wideband LNA Employing Cascaded Complimentary Common Gate and Common Source Stages,” IEEE Microwave and Wireless Components Letters, vol. 27, no. 6, pp. 587-589, 2017, doi: 10.1109/LMWC.2017.2701300.
  9. H. Chen, H. Zhu, L. Wu, Q. Xue and W. Che, “A 7.2–27.3 GHz CMOS LNA With 3.51 ±0.21 dB Noise Figure Using Multistage Noise Matching Technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 1, pp. 74-84, 2022, doi: 10.1109/TMTT.2021.3121074.
  10. K. Wang and H. Zhang, “A 22-to-47 GHz 2-Stage LNA with 22.2 dB Peak Gain by Using Coupled L-Type Interstage Matching Inductors,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4607-4617, 2020, doi: 10.1109/TCSI.2020.3019335.
  11. Y.-S. Lin, C.-C. Wang, G.-L. Lee and C.-C. Chen, “High-Performance Wideband Low-Noise Amplifier Using Enhanced π-Match Input Network,” in IEEE Microwave and Wireless Components Letters, vol. 24, no. 3, pp. 200-202, March 2014, doi: 10.1109/LMWC.2013.2293666.
  12. M. El-Nozahi, E. Sanchez-Sinencio and K. Entesari, “A Millimeter-Wave (23–32 GHz) Wideband BiCMOS Low-Noise Amplifier,” IEEE Journal of Solid-State Circuits, vol. 45, no. 2, pp. 289-299, 2010, doi: 10.1109/JSSC.2009.2038126.
  13. C.-H. Wu, Y.-S. Lin, J.-H. Lee and C.-C. Wang, “A 2.87±0.19dB NF 3.1∼10.6GHz ultra-wideband low-noise amplifier using 0.18µm CMOS technology,” IEEE Radio and Wireless Symposium, Santa Clara, CA, USA, pp. 227-230, 2012, doi: 10.1109/RWS.2012.6175315.
  14. L. Wang and Y. J. Cheng, “A 2–20-GHz Ultrawideband High-Gain Low-Noise Amplifier with Enhanced Stability,” IEEE Microwave and Wireless Technology Letters, vol. 34, no. 4, pp. 415-418, 2024, doi: 10.1109/LMWT.2024.3351279. Journal of Electrical Engineering, Vol. 76, No. 5, 2025 467
  15. D. He, N. Cui, J. Fan and Z. Yu, “Design of Multiple Feedback-Based Low-Noise Amplifier with Improved Broadband Simultaneous Noise and Impedance Matching Technique,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 2, pp. 582-586, 2024, doi: 10.1109/TCSII.2023.3309380.
  16. Z. Zhang, J. Chen, K. Yu, T. Wang and G. Zhang, “A 26.5–38-GHz Ka-Band GaN-on-Si Low-Noise Amplifier with Variable Gain Control,” IEEE Microwave and Wireless Technology Letters, vol. 35, no. 8, pp. 1214-1217, 2025, doi: 10.1109/LMWT.2025.3563801.
  17. Z. Liu, C. Chye Boon and Y. Dong, “A 0.6 V, 1.74 mW, 2.9 dB NF Inductorless Wideband LNA in 28-nm CMOS Exploiting Noise Cancellation and Current Reuse,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 71, no. 8, pp. 3561-3572, 2024, doi: 10.1109/TCSI.2024.3408901.
DOI: https://doi.org/10.2478/jee-2025-0048 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 461 - 467
Submitted on: Jul 17, 2025
Published on: Oct 16, 2025
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Dheeraj Kalra, Mayank Srivastava, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.