Have a personal or library account? Click to login

Robustness of YOLO models for object detection in remote sensing images

Open Access
|Oct 2025

References

  1. J. Ding et al., “Object detection in aerial images: A large-scale benchmark and challenges,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7778–7796, 2022, doi: 10.1109/TPAMI.2021.3117983
  2. K. Li, G. Wan, G. Cheng, L. Meng, and J. Han, “Object detection in optical remote sensing images: A survey and a new benchmark,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 159, pp. 296–307, 2020, doi: 10.1016/j.isprsjprs.2019.11.023
  3. S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017, doi: 10.1109/TPAMI.2016.2577031
  4. K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2980–2988. doi: 10.1109/ICCV.2017.322
  5. H. Bakir and R. Bakir, “Evaluating the robustness of yolo object detection algorithm in terms of detecting objects in noisy environment,” Journal of Scientific Reports-A, no. 054, pp. 1–25, 2023, doi: 10.59313/jsr-a.1257361
  6. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2999–3007. doi: 10.1109/ICCV.2017.324
  7. G. Jocher, “YOLOv5 by ultralytics,”, 2020. [Online]. Available: https://github.com/ultralytics/yolov5
  8. C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 7464–7475. doi: 10.1109/CVPR52729.2023.00721
  9. G. Jocher, C. Ayush, and Q. Jing, “Ultralytics YOLOv8,” 2023. [Online]. Available: https://github.com/ultralytics/ultralytics
  10. C.-Y. Wang, I.-H. Yeh, and H.-Y. Mark Liao, “YOLOv9: Learning what you want to learn using programmable gradient information,” in Proceedings of the European Conference on Computer Vision (ECCV), 2024, pp. 1–21. doi: 10.1007/978-3-031-72751-1_1
  11. A. Wang et al., “YOLOv10: Real-Time end-to-end object detection,” in Advances in Neural Information Processing Systems, pp. 107984–108011, 2024, [Online]. Available: https://openreview.net/pdf?id=tz83Nyb71l
  12. J. Glenn and Q. Jing, “Ultralytics YOLOv11,”. 2024. [Online]. Available: https://github.com/ultralytics/ultralytics
  13. S. Cygert and A. Czyzewski, “Toward robust pedestrian detection with data augmentation,” IEEE Access, vol. 8, pp. 136674–136683, 2020, doi: 10.1109/ACCESS.2020.3011356
  14. C. Michaelis et al., “Benchmarking robustness in object detection: autonomous driving when winter is coming,” arXiv preprint arXiv:1907.07484, Jul. 2019, [Online]. Available: https://arxiv.org/abs/1907.07484
  15. D. Li, J. Zhang, and K. Huang, “Universal adversarial perturbations against object detection,” Pattern Recognition, vol. 110, art. no. 107584, 2021, doi: 10.1016/j.patcog.2020.107584
  16. S. Dodge and L. Karam, “Understanding how image quality affects deep neural networks,” in 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), 2016, pp. 1–6. doi: 10.1109/QoMEX.2016.7498955
  17. J. A. Rodríguez-Rodríguez, E. López-Rubio, J. A. Ángel-Ruiz, and M. A. Molina-Cabello, “The impact of noise and brightness on object detection methods,” Sensors, vol. 24, no. 3, art. no. 821, 2024, doi: 10.3390/s24030821
  18. M. Aqqa, P. Mantini, and S. K. Shah, “Understanding how video quality affects object detection algorithms,” in Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), 2019, pp. 96–104. doi: 10.5220/0007401600960104
  19. A. Beghdadi, M. Mallem, and L. Beji, “Benchmarking performance of object detection under image distortions in an uncontrolled environment,” in IEEE International Conference on Image Processing (ICIP), 2022, pp. 2071–2075. doi: 10.1109/ICIP46576.2022.9897643
  20. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal speed and accuracy of object detection,” arXiv preprint. 2020, [Online]. Available: https://arxiv.org/abs/2004.10934
  21. M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient object detection,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 10778–10787. doi: 10.1109/CVPR42600.2020.01079
  22. T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in European Conference on Computer Vision (ECCV), 2014, pp. 740–755. doi: 10.1007/978-3-319-10602-1_48
  23. T. Gandor and J. Nalepa, “First gradually, then suddenly: understanding the impact of image compression on object detection using deep learning,” Sensors, vol. 22, no. 3, art. no. 1104, 2022, doi: 10.3390/s22031104
  24. J. A. Rodríguez-Rodríguez, M. A. Molina-Cabello, R. Benítez-Rochel, and E. López-Rubio, “The effect of noise and brightness on convolutional deep neural networks,” in Pattern Recognition. ICPR International Workshops and Challenges, 2021, pp. 639–654. doi: 10.1007/978-3-030-68780-9_49
  25. H. Liu, Z. Li, S. Lin, and L. Cheng, “Remote sensing image denoising based on deformable convolution and attention-guided filtering in progressive framework,” Signal, Image and Video Processing, vol. 18, no. 11, pp. 8195–8205, 2024, doi: 10.1007/s11760-024-03461-1
  26. A. Bayerl, M. Keglevic, M. G. Wödlinger, and R. Sablatnig, “Impact of learned domain specific compression on satellite image object classification,” in Proceedings of the 26th Computer Vision Winter Workshop (CVWW), pp. 1–8, 2023. doi: 10.34726/5331
  27. Z. Chen, Y. Hu, and Y. Zhang, “Effects of compression on remote sensing image classification based on fractal analysis,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 7, pp. 4577–4590, 2019, doi: 10.1109/TGRS.2019.2891679
  28. C. Lee, S. Youn, J. Y. Baek, and J. Serra Sagristà, “Effects of compression on classification performance and discriminant information preservation in remotely sensed data,” in Proc. SPIE 9501, Satellite Data Compression, Communications, and Processing XI. 2015, pp. 12–20, art. no. 950103. doi: 10.1117/12.2180223
  29. J. Wei, L. Mi, Y. Hu, J. Ling, Y. Li, and Z. Chen, “Effects of lossy compression on remote sensing image classification based on convolutional sparse coding,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022, doi: 10.1109/LGRS.2020.3047789
  30. Q. Shi et al., “Research on spaceborne target detection based on YOLOv5 and image compression,” Future Internet, vol. 15, no. 3, art. no. 114, 2023, doi: 10.3390/fi15030114
  31. G.-S. Xia et al., “DOTA: A large-scale dataset for object detection in aerial images,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 3974–3983. doi: 10.1109/CVPR.2018.00418
  32. L. A. Varga, S. Koch, and A. Zell, “Comprehensive analysis of the object detection pipeline on UAVs,” Remote Sensing, vol. 14, no. 21, 2022, doi: 10.3390/rs14215508
  33. K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “CenterNet: Keypoint triplets for object detection,” in IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 6568–6577. doi: 10.1109/ICCV.2019.00667
  34. R. Tsekhmystro, O. Rubel, O. Prysiazhniuk, and V. Lukin, “Impact of distortions in UAV images on quality and accuracy of object localization,” Radioelectronic and Computer Systems, vol. 2024, no. 4, pp. 59–67, 2024, doi: 10.32620/reks.2024.4.05
  35. T. Adli, D. Bujaković, B. Bondžulić, M. Z. Laidouni, and M. Andrić, “A modified YOLOv5 architecture for aircraft detection in remote sensing images,” Journal of the Indian Society of Remote Sensing, vol. 53, no. 3, pp. 933–948, 2025, doi: 10.1007/s12524-024-02033-7
  36. A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image compression standard,” IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 36–58, 2001, doi: 10.1109/79.952804
DOI: https://doi.org/10.2478/jee-2025-0045 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 429 - 442
Submitted on: Jun 29, 2025
Published on: Oct 16, 2025
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Touati Adli, Dimitrije M. Bujaković, Boban P. Bondžulić, Mohammed Zouaoui Laidouni, Milenko S. Andrić, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.