Have a personal or library account? Click to login
Adaptive observer design for a class of nonlinear fractional-order Lipschitz systems with unknown time-varying parameters Cover

Adaptive observer design for a class of nonlinear fractional-order Lipschitz systems with unknown time-varying parameters

Open Access
|Feb 2025

References

  1. H. K. Khalil, “High-gain observers in nonlinear feedback control,” New directions in nonlinear observer design, 1st ed. London: Springer London, 2007, pp. 249-268.
  2. A. J. Krener and A. Isidori, “Linearization by output injection and nonlinear observers,” Systems & Control Letters, vol. 3, no. 1, pp. 47-52, 1983.
  3. M. Arcak and P. Kokotović, “Nonlinear observers: A circle criterion design and robustness analysis,” Automatica, vol. 37, no. 12, pp. 1923-1930, 2001.
  4. F. Abdollahi, H. A. Talebi and R. V. Patel, “A stable neural network-based observer with application to flexible-joint manipulators,” IEEE Transactions on Neural Networks, vol. 17, no. 1, pp. 118-129, 2006.
  5. Z. M. Shah and F. A. Khanday, “Analysis of disordered dynamics in polymer nanocomposite dielectrics for the realization of fractional-order capacitor,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 28, no. 1, pp. 266-273, 2021.
  6. N. Engheta, “On fractional calculus and fractional multipoles in electromagnetism,” IEEE Transactions on Antennas and Propagation, vol. 44, no. 4, pp. 554-566, 1996.
  7. T. J. Freeborn, “A survey of fractional-order circuit models for biology and biomedicine,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 3, no. 3, pp. 416-424, 2013.
  8. T. Škovránek, I. Podlubny and I. Petráš, “Modeling of the national economies in state-space: A fractional calculus approach,” Economic Modelling, vol. 29, no. 4, pp. 1322-1327, 2012.
  9. M. M. Hadji and S. Ladaci, “Full-State Observer Synthesis for a Class of One-Sided Lipschitz Nonlinear Fractional-Order Systems,” WSEAS Transactions on Systems and Control, vol. 19, no. 379-384, 2024.
  10. N. Singh and A. Sinha, “Optical image encryption using fractional Fourier transform and chaos,” Optics and Lasers in Engineering, vol. 46, no. 2, pp. 117-123, 2008.
  11. S. Ladaci, S. E. Khelas, A. R. Ynineb, D. Copot and C.-M. Ionescu, “Fractional order MRAC control design for a lightning system based on a fractional order second degree model,” IFAC-PapersOnLine, vol. 58, no. 12, pp. 95-100, 2024.
  12. H Benchaita and S Ladaci, “Fractional adaptive SMC fault tolerant control against actuator failures for wing rock supervision,” Aerospace Science and Technology, vol. 114, 106745, 2021.
  13. S. Ladaci and A. Charef, “On fractional adaptive control,” Nonlinear Dynamics, vol. 43, pp. 365-378, 2006.
  14. M. M. Hadji and S. Ladaci, “State space feedback control with fractional order PIλ configuration for fractional order cryptovirology stabilization in blockchain systems,” in 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD), IEEE, 2022, pp. 1009-1013.
  15. K. Nosrati, J. Belikov, A. Tepljakov, et al., “Extended fractional singular Kalman filter,” Applied Mathematics and Computation, vol. 448, 127950, 2023.
  16. O. Martinez-Fuentes and R. Martínez-Guerra, “A high-gain observer with Mittag–Leffler rate of convergence for a class of nonlinear fractional-order systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 79, p. 104909, 2019.
  17. E. Ilten and M. Demirtas, “Fractional order super-twisting sliding mode observer for sensorless control of induction motor,” COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 38, no. 2, pp. 878-892, 2019.
  18. I. N’Doye, T.-M. Laleg-Kirati, M. Darouach, et al., “Adaptive observer for nonlinear fractional-order systems,” International Journal of Adaptive Control and Signal Processing, vol. 31, no. 3, pp. 314-331, 2017.
  19. F. Zouari, A. Boulkroune, A. Ibeas, et al., “Observer-based adaptive neural network control for a class of MIMO uncertain nonlinear time-delay non-integer-order systems with asymmetric actuator saturation,” Neural Computing and Applications, vol. 28, pp. 993-1010, 2017.
  20. T. Zhan, J. Tian and S. Ma, “Full-order and reduced-order observer design for one-sided Lipschitz nonlinear fractional-order systems with unknown input,” International Journal of Control, Automation and Systems, vol. 16, no. 5, pp. 2146-2156, 2018.
  21. M. Abbaszadeh and H. J. Marquez, “Nonlinear observer design for one-sided Lipschitz systems,” Proceedings of the 2010 American Control Conference, IEEE, 2010, pp. 5284-5289.
  22. A. Jmal, O. Naifar, A. Ben Makhlof, et al., “On observer design for nonlinear Caputo fractional-order systems,” Asian Journal of Control, vol. 20, no. 4, pp. 1533-1540, 2018.
  23. M. Ekramian, F. Sheikholeslam and S. Hosseinnia, “Adaptive State Observer for Lipschitz Nonlinear Systems,” Systems & Control Letters, vol. 62, no. 4, pp. 319-323, 2013.
  24. H. Ahmed, A. Jmal and A. Ben Makhlouf, “A practical observer for state and sensor fault reconstruction of a class of fractional‐order nonlinear systems,” The European Physical Journal Special Topics, vol. 232, no. 14, pp. 2437-2443, 2023.
  25. S. Kong, M. Saif and B. Liu, “Observer design for a class of nonlinear fractional-order systems with unknown input,” Journal of the Franklin Institute, vol. 354, no. 13, pp. 5503-5518, 2017.
  26. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, 2006.
  27. N. Aguila-Camacho, M. A. Duarte-Mermoud and J. A. Gallegos, “Lyapunov functions for fractional order systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 9, pp. 2951–2957, 2014.
  28. N. Aguila-Camacho and M. A. Duarte-Mermoud, “Boundedness of the solutions for certain classes of fractional differential equations with application to adaptive systems,” ISA Transactions, vol. 60, pp. 82–88, 2016.
  29. F. E. Thau, “Observing the state of non-linear dynamic systems,” International Journal of Control, vol. 17, no. 3, pp. 471-479, 1973.
  30. M. A. Hammami, “Global convergence of a control system by means of an observer,” Journal of Optimization Theory and Applications, vol. 108, no. 2, pp. 377–388, 2001.
  31. E. A. Boroujeni and H. R. Momeni, “An iterative method to design optimal non-fragile H observer for Lipschitz nonlinear fractional-order systems,” Nonlinear Dynamics, vol. 80, no. 4, pp. 1801–1810, 2015.
DOI: https://doi.org/10.2478/jee-2025-0009 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 91 - 98
Submitted on: Oct 5, 2024
Published on: Feb 13, 2025
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Mohsen Mohamed Hadji, Samir Ladaci, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.