References
- H. H. Radamson et. al, “CMOS scaling for the 5 nm node and beyond: device, process and technology,” Nanomaterials, vol. 14, no. 10, pp. 837, 2024. doi: 10.3390/nano14100837
- C. S. Lent, P. D. Tougaw, W. Porod and G. H. Bernstein, “Quantum cellular automata,” Nanotechnology, vol. 4, no. 1, pp. 49, 1993. doi: 10.1088/0957-4484/4/1/004
- P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” Journal of Applied Physics, vol. 75, no. 3, pp. 1818–1825, 1994. doi: 10.1063/1.356375
- C. S. Lent and P. D. Tougaw, “A device architecture for computing with quantum dots,” Proceedings of the IEEE, vol. 85, no. 4, pp. 541–557, 1997. doi: 10.1109/5.573740
- P. Megha, B. S. Premananda and N. Kamat, “Area and energy optimized Hamming encoder and decoder for nano-communication,” Journal of Electrical Engineering, vol. 75, no. 3, pp. 229–236, 2024. doi: 10.2478/jee-2024-0028
- A. Khan, M. C. Parameshwara and A. N. Bahar, “Energy estimation of QCA circuits: An investigation with multiplexers,” Journal of Electrical Engineering, vol. 73, no. 4, pp. 276-283, 2022. doi:10.2478/jee-2022-0036
- M. Gholami and Z. Amirzadeh, “Low-power, highspeed, and area-efficient sequential circuits by quantum-dot cellular automata: T-latch and counter study,” Frontiers of Information and Electronic Engineering, vol. 24, no. 3, pp. 457–459, 2024. doi: 10.1631/FITEE.2200361
- A. Khan, S. Mandal and R. Arya, “Simple design of QCA-based T-flipflop with energy dissipation analysis for nanocomputing,” International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), vol. 44, no. 4, pp. 233–239, 2023. doi: 10.1504/IJAHUC.2023.135108
- A. Khan, “Elementary design and analysis of QCA-based T-flipflop for nanocomputing,” Journal of Electrical Engineering, vol. 74, no. 5, pp. 336–343, 2023. doi: 10.2478/jee-2023-0041
- S. Husain and N. Gupta, “Harnessing fault tolerant capabilities of USE clocking scheme for designing QCA flip-flops,” 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 104–109, 2023.
- A. Yan, R. Liu, Z. Huang, P. Girard, and X. Wen, “Designs of level-sensitive T flip-flops and polar encoders based on two XOR/XNOR gates,” Electronics, vol. 11, no. 10, pp. 1658, 2022. doi: 10.3390/electronics11101658
- S. R. Heikalabad, “Non-coplanar counter in quantum-dot cellular automata,” The European Physical Journal Plus, vol. 136, pp. 209, 2021. doi: 10.1140/epjp/s13360-021-01198-1
- R. Singh, S. S. Das, V. Sarada, “Design of a compact negative-edge triggered t flip-flop in QCA technology,” International Journal of Electrical Engineering & Technology (IJEET), vol. 11, no. 2, pp. 139–146, 2020.
- A. H. Majeed, E. Alkaldy, M. S. Zainal, and D. B. M. Nor, “Synchronous counter design using novel level sensitive T-FF in QCA technology,” Journal of Low Power Electronics and Applications, vol. 9, no. 3, pp. 27, 2019. doi: 10.3390/jlpea9030027
- A. N. Bahar, R. Laajimi, M. Abdullah-Al-Shaf and K. Ahmed, “Toward efficient design of flip-flops in quantum-dot cellular automata with power analysis,” International Journal of Theoretical Physics, vol. 57, pp. 3419–3428, 2018. doi: 10.1007/s10773-018-3855-7
- N. Samanvita, S. Gatade, N. M. Sudhakar and S. Raman, “Quantum dot cellular automata-based simulation and design of 2-bit up and down counters,” 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT), pp. 1–6, 2024. doi: 10.1109/ICDCOT61034.2024.10515578
- A. N. Bahar, S. Waheed, N. Hossain and M. Asaduzzaman, “A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis,” Alexandria Engineering Journal, vol. 57, no. 2, pp. 729–738, 2018. doi: 10.1016/j.aej.2017.01.022
- K. Walus, T. J. Dysart, G. A. Jullien and R. Budiman, “QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata,” IEEE Transactions on Nanotechnology, vol. 3, no. 1, pp. 26–31, 2004. doi: 10.1109/TNANO.2003.820815
- S. Srivastava, S. Bhanja, and A. Asthana, “QCAPro an error power estimation tool for QCA circuit design,” Proceedings IEEE International Symposium on Circuits and Systems, pp. 2377–2380, 2011. doi: 10.1109/ISCAS.2011.5938081
- F. S. Torres, R. Wille, P. Niemann, and R. Drechsler, “An energy-aware model for the logic synthesis of quantum-dot cellular automata,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 12, pp. 3031–3041, 2018. doi: 10.1109/TCAD.2018.2789782
- A. Khan and R. K. Shaw, “Multilayered XOR gate: a quantum dot cellular automata (QCA) approach,” Journal of The Institution of Engineers (India): Series B, 2024. doi: 10.1007/s40031-024-01160-6
- M. Patidar and N. Gupta, “Efficient design and implementation of a robust coplanar crossover and multilayer hybrid full adder– subtractor using QCA technology,” The Journal of Supercomputing, vol. 77, no. 8, pp. 7893–7915, 2021. doi: 10.1007/s11227-020-03592-5
- R. Chakraborty, D. De, A. Khan, C. Mukherjee and S. Pramanik, “Effect of temperature and kink energy in multilevel digital circuit using Quantum dot cellular automata,” 2012 5th International Conference on Computers and Devices for Communication (CODEC), pp. 1–4, 2012. doi: 10.1109/CODEC.2012.6509297
- Y. Ardesi, G. Beretta, M. Vacca, G. Piccinini and M. Graziano, “Impact of Molecular Electrostatics on Field-Coupled Nanocomputing and Quantum-Dot Cellular Automata Circuits,” Electronics, vol. 11, no. 2, pp. 276, 2022. doi: 10.3390/electronics11020276