Have a personal or library account? Click to login
Bimodal and trimodal image fusion: A study of subjective scores and objective measures Cover

Bimodal and trimodal image fusion: A study of subjective scores and objective measures

Open Access
|Feb 2025

References

  1. O. Zelmati, B. Bondzulic, B. Pavlovic, I. Tot, and S. Merrouche, “Study of subjective and objective quality assessment of infrared compressed images”, Journal of Electrical Engineering, vol. 73, no. 2, pp. 73–87, doi: 10.2478/jee-2022-0011, 2022.
  2. D. Peric, B. Livada, M. Peric, and S. Vujic, “Thermal imager range: Predictions, expectations, and reality”, Sensors, vol. 19, no. 15, pp. 3313, doi: 10.3390/s19153313, 2019.
  3. R. Gade, and T. B. Moeslund, “Thermal cameras and applications: A survey”, Machine Vision and Applications, vol. 25, no. 1, pp. 245-262, doi: 10.1007/s00138-013-0570-5, 2014.
  4. D. L. Hickman, and S. J. Shepperd, “Image fusion systems for surveillance applications: Design options and constraints for a tri-band camera”, Proceedings SPIE Infrared Technology and Applications XLVII, pp. 310-328, doi: 10.1117/12.2584984, 2021.
  5. C. Jiang, H. Ren, H. Yang, H. Huo, P. Zhu, Z. Yao, J. Li, M. Sun, and S. Yang, “M2FNet: Multi-modal fusion network for object detection from visible and thermal infrared images”, International Journal of Applied Earth Observation and Geoinformation, vol. 130, pp. 103918, doi: 10.1016/j.jag.2024.103918, 2024.
  6. R. Li, M. Zhou, D. Zhang, Y. Yan, and Q. Huo, “A survey of multi-source image fusion”, Multimedia Tools and Applications, vol. 83, no. 6, pp. 18573-18605, doi: 10.1007/s11042-023-16071-9, 2024.
  7. Y. Hua, W. Xu, and Y. Ai, “A residual ConvNeXt-based network for visible and infrared image fusion”, 4th International Conference on Electronic Communication and Artificial Intelligence (ICECAI), Guangzhou, China, May 12-14, pp. 370-376, doi: 10.1109/ICECAI58670.2023.10176540, 2023.
  8. R. Soroush, Y. Baleghi, “NIR/RGB image fusion for scene classification using deep neural networks”, The Visual Computer, vol. 39, no. 7, pp. 2725-2739, doi: 10.1007/s00371-022-02488-0, 2023.
  9. X. Zhang, and Y. Demiris, “Visible and infrared image fusion using deep learning”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no 8, pp. 10535-10554, doi: 10.1109/TPAMI.2023.3261282, 2023.
  10. Y. Liu, S. Liu, and Z. Wang, “A general framework for image fusion based on multi-scale transform and sparse representation”, Information Fusion, vol. 24, pp. 147-164, doi: 10.1016/j.inffus.2014.09.004, 2015.
  11. H. Xu, J. Ma, J. Jiang, X. Guo, and H. Ling, “U2Fusion: A unified unsupervised image fusion network”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp. 502-518, doi: 10.1109/TPAMI.2020.3012548, 2022.
  12. J. Ma, L. Tang, F. Fan, J. Huang, X. Mei, and Y. Ma, “SwinFusion: Cross-domain long-range learning for general image fusion via Swin Transformer”, IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 7, pp. 1200-1217, doi 10.1109/JAS.2022.105686, 2022.
  13. A. Toet, M. A. Hogervorst, and A. R. Pinkus, “The TRICLOBS dynamic multi-band image data set for the development and evaluation of image fusion methods”, PLoS One, vol. 11, no. 12, pp. 0165016, doi: 10.1371/journal.pone.0165016, 2016.
  14. K. Xiao, X. Kang, H. Liu, and P. Duan, “MOFA: A novel dataset for multi-modal image fusion applications”, Information Fusion, vol. 96, pp. 144-155, doi: 10.1016/j.inffus.2023.03.012, 2023.
  15. Z. Liu, H. Mao, C.Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A ConvNet for the 2020s, IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, June 18-24, pp. 11966-11976, doi: 10.1109/CVPR52688.2022.01167, 2022.
  16. P. J. Burt, and E. H. Adelson, “The Laplacian pyramid as a compact image code”, IEEE Transactions on Communication, vol. 31, no. 4, pp. 532-540, doi: 10.1016/B978-0-08-051581-6.50065-9, 1983.
  17. X. Zhang, P. Ye, and G. Xiao, “VIFB: A visible and infrared image fusion benchmark”, IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, June 14-19, pp. 468-478, doi: 10.1109/CVPRW50498.2020.00060, 2020.
  18. S. Singh, H. Singh, G. Bueno, O. Deniz, S Singh, H. Monga, P. N. Hrisheekesha, and A. Pedraza, “A review of image fusion: Methods, applications and performance metrics”, Digital Signal Processing, vol. 137, pp. 104020, doi: 10.1016/j.dsp.2023.104020, 2023.
  19. A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely blind’ image quality analyzer”, IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209-212, doi: 10.1109/LSP.2012.2227726, 2013.
  20. A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain”, IEEE Transactions on Image Processing, vol. 21, no. 12, pp. 4695-4708, doi: 10.1109/TIP.2012.2214050, 2012.
  21. N. Venkatanath, D. Praneeth, M. C. Bh, S. S. Channappayya, and S. S. Medasani, “Blind image quality evaluation using perception based features”, Twenty First National Conference on Communications (NCC), Mumbai, India, 27 February - 01 March, pp. 1-6, doi: 10.1109/NCC.2015.7084843, 2015.
  22. Z. M. Laidouni, B. Bondžulić, D. Bujaković, V. Petrović, T. Adli, and M. Andrić, “BTIFD: Bimodal and trimodal image fusion database”, Mendeley Data, V1, available at: https://data.mendeley.com/datasets/btnws5tbcm/1, 2024.
DOI: https://doi.org/10.2478/jee-2025-0002 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 7 - 17
Submitted on: Sep 15, 2024
Published on: Feb 13, 2025
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2025 Mohammed Zouaoui Laidouni, Boban P. Bondžulić, Dimitrije M. Bujaković, Vladimir S. Petrović, Touati Adli, Milenko S. Andrić, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.