Have a personal or library account? Click to login
Real-time visual verification of leap motion controller measurements for reliable finger tapping test in Parkinson’s disease Cover

Real-time visual verification of leap motion controller measurements for reliable finger tapping test in Parkinson’s disease

Open Access
|Aug 2024

References

  1. S. Sveinbjornsdottir, “The clinical symptoms of parkinson’s disease”, <em>Journal of neurochemistry</em>, vol. 139, pp. 318–324, 2016.
  2. Y. Mamontov and M. Willander, <em>High-dimensional nonlinear diffusion stochastic processes</em>, 1<sup>st</sup> ed. Singa-pore: World Scientific, 2001.
  3. R. B. Postuma, D. Berg, M. Stern, W. Poewe, C. W. Olanow, W. Oertel, J. Obeso, K. Marek, I. Litvan, A. E. Lang, et al., “Mds clinical diagnostic criteria for parkinson’s disease”, <em>Movement disorders</em>, vol. 30, no. 12, pp. 1591–1601, 2015.
  4. A. Shirani, B. D. Newton, and D. T. Okuda, “Finger tapping impairments are highly sensitive for evaluating upper motor neuron lesions”, <em>BMC neurology</em>, vol. 17, pp. 1–8, 2017.
  5. C. G. Goetz, B. C. Tilley, S. R. Shaftman, G. T. Stebbins, S. Fahn, P. Martinez-Martin, W. Poewe, C. Sampaio, M. B. Stern, R. Dodel, et al., “Movement disorder society-sponsored revision of the unified parkinson’s disease rating scale (mdsupdrs): scale presentation and clinimetric testing results”, <em>Movement disorders: official journal of the Movement Disorder Society</em>, vol. 23, no. 15, pp. 2129–2170, 2008.
  6. L. J. Evers, J. H. Krijthe, M. J. Meinders, B. R. Bloem, and T. M. Heskes, “Measuring parkinson’s disease over time: the real-world withinsubject reliability of the mds-updrs”, <em>Movement Disorders</em>, vol. 34, no. 10, pp. 1480–1487, 2019.
  7. M. Yahya, J. A. Shah, K. A. Kadir, Z. M. Yusof, S. Khan, and A. Warsi, “Motion capture sensing techniques used in human upper limb motion: A review”, <em>Sensor Review</em>, vol. 39, no. 4, pp. 504–511, 2019.
  8. J. Y. Tung, T. Lulic, D. A. Gonzalez, J. Tran, C. R. Dickerson, and E. A. Roy, “Evaluation of a portable markerless finger position capture device: accuracy of the leap motion controller in healthy adults”, <em>Physiological measurement</em>, vol. 36, no. 5, p. 1025, 2015.
  9. A. H. Butt, E. Rovini, C. Dolciotti, G. De Petris, P. Bongioanni, M. Carboncini, and F. Cavallo, “Objective and automatic classification of parkinson disease with leap motion controller”, <em>Biomedical engineering online</em>, vol. 17, no. 1, pp. 1–21, 2018.
  10. A. Garcia-Agundez and C. Eickhoff, “Towards objective quantification of hand tremors and bradykinesia using contactless sensors: A systematic review”, <em>Frontiers in Aging Neuroscience</em>, vol. 13, p. 716102, 2021.
  11. M. Djurić-Jovičić, N. S. Jovičić, A. Roby-Brami, M. B. Popović, V. S. Kostić, and A. R. Djordjević, “Quantification of finger-tapping angle based on wearable sensors,” <em>Sensors</em>, vol. 17, no. 2, p. 203, 2017.
  12. J. A. Nelder and R. Mead, “A simplex method for function minimization”, <em>The computer journal</em>, vol. 7, no. 4, pp. 308–313, 1965.
  13. M. Komlósi, “Detecting of hand movement features using leap motion sensor”, <em>Diploma thesis</em>, FEI STU Bratislava, 2020.
  14. P. Matejicka, S. Kajan, J. Goga, I. Straka, M. Balaz, S. Janovic, M. Minar, P. Valkovic, M. Hajduk, and Z. Kosutzka, “Bradykinesia in dystonic hand tremor: kinematic analysis and clinical rating”, <em>Frontiers in Human Neuroscience</em>, vol. 18, p. 1395827, 2024.
  15. A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least squares procedures”, <em>Analytical chemistry</em>, vol. 36, no. 8, pp. 1627–1639, 1964.
  16. I. Staretu and C. Moldovan, “Leap motion device used to control a real anthropomorphic gripper”, <em>International Journal of Advanced Robotic Systems</em>, vol. 13, no. 3, p. 113, 2016.
  17. S. Kajan, D. Pernecky, and J. Goga, “Application of neural network in medical diagnostics”, <em>Technical computing Prague 2015</em>, vol. 23, p. 9, 2015.
  18. C. Kincaid, P. Johnson, and S. K. Charles, “Feasibility of using the leap motion controller to administer conventional motor tests: a proofof- concept study”, <em>Biomedical Physics &amp; Engineering Express</em>, vol. 9, p. 035009, mar 2023.
  19. E. Gamboa, A. Serrato, J. Castro, D. Toro, and M. Trujillo, “Advantages and limitations of leap motion from a developers’, physical therapists’, and patients’ perspective”, <em>Methods of Information in Medicine</em>, vol. 59, no. 02/03, pp. 110–116, 2020.
  20. C. J. Kincaid, A. C. Vaterlaus, N. R. Stanford, and S. K. Charles, “Frequency response of the leap motion controller and its suitability for measuring tremor”, <em>Medical engineering &amp; physics</em>, vol. 63, pp. 72–78, 2019.
  21. A. H. Butt, E. Rovini, C. Dolciotti, P. Bongioanni, G. De Petris, and F. Cavallo, “Leap motion evaluation for assessment of upper limb motor skills in parkinson’s disease”, in 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 116–121, 2017
DOI: https://doi.org/10.2478/jee-2024-0039 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 325 - 332
Submitted on: Apr 26, 2024
Published on: Aug 9, 2024
Published by: Slovak University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2024 Slavomír Kajan, Jozef Goga, Peter Matejička, Michal Minár, Jarmila Pavlovičová, Zuzana Košutzká, published by Slovak University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.