Have a personal or library account? Click to login
Artificial neural network-based sparse channel estimation for V2V communication systems Cover

Artificial neural network-based sparse channel estimation for V2V communication systems

Open Access
|Aug 2024

References

  1. R. Porselvi and M. Murugan, “An efficient pilot-symbol-aided and decision-directed hybrid channel estimation technique in OFDM systems”, Telecommunication Systems, Springer, vol. 73, no. 4, pp. 531-544, 2020. doi:10.1007/s11276-023-03585-1
  2. A. Anwar, B.-C. Seet, and X. J. Li, “NOMA for V2X under similar channel conditions”, AIMS Electronics and Electrical Engineering, vol. 2, pp. 48-58, 2018. doi:10.3934/ElectrEng.2018.2.48
  3. E. C. Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, “A review of sparse recovery algorithms”, IEEE Access, vol. 7, pp. 1300-1322, 2018.doi:10.1109/ACCESS.2018.2886471
  4. K. Mei, J. Liu, X. Zhang, K. Cao, N. Rajatheva, and J. Wei, “A low complexity learning-based channel estimation for OFDM systems with online training”, IEEE Transactions on Communications, vol. 69, no.10, pp. 6722-6733, 2021. doi:10.1109/TCOMM.2021.3095198
  5. N. Ronald, S. Schwarz, and M. Rupp, “Filter bank multicarrier modulation schemes for future mobile communications”, IEEE Journal on Selected Areas in Communications, vol. 35, no. 8, pp. 1768-1782, 2017. doi:10.1109/JSAC.2017.2710022
  6. A. B. Narasimhamurthy, M. K. Banavar, and C. Tepedelenlioğlu, "OFDM systems for wireless communications," Springer Cham, ED. 1, 2010. doi: 10.1007/978-3-031-01513-7
  7. X. Ma, F. Yang, S. Liu, J. Song, and Z. Han, “Sparse channel estimation for MIMO-OFDM systems in high-mobility situations”, IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6113-6124, 2018. doi:10.1109/TVT.2018.2811368
  8. M. Yang, B. Ai, R. He, G. Wang, L. Chen, X. Li, C. Huang, Z. Ma, Z. Zhong, J. Wang, Y. Li, and T. Juhana. “Measurements and cluster-based modeling of vehicle-to-vehicle channels with large vehicle obstructions”, IEEE Transactions on Wireless Communications, vol. 19, no. 9, pp. 5860-5874, 2020. doi:10.1109/TWC.2020.2997808
  9. W. Lei and L. Yao, “Performance analysis of time reversal communication systems”, IEEE Communications Letters, vol. 23, no.4, pp.680-683, 2019. doi:10.1109/LCOMM.2019.2901484
  10. Z. Yang and Y. R. Zheng, “Iterative channel estimation and turbo equal-ization for multiple-input multiple-output underwater acoustic communications”, IEEE Journal of Oceanic Engineering, vol. 41, no. 1, pp. 232-242, 2016. doi:10.1109/JOE.2015.2398731
  11. H. Esmaiel, “Damped Zero-Pseudorandom Noise OFDM Systems”, International Journal of Electronics and Telecommunications, vol. 64, no. 4, 2018. doi: 10.24425/123542
  12. Q. Hu, F. Gao, H. Zhang, S. Jin, and G. Y. Li, “Deep learning for channel estimation: Interpretation, performance, and comparison”, IEEE Transactions on Wireless Communications, vol. 20, no. 4, pp. 2398-2412, 2021. doi:10.1109/TWC.2020.3042074
  13. H. Senol, A. R. Bin Tahir, and A. Özmen, “Artificial neural network based estimation of sparse multipath channels in OFDM systems”, Telecommunication Systems, vol. 77, pp. 231-240, 2021. doi: 10.1007/s11235-021-00754-5
  14. X. Ma and Z. Gao, “Data-driven deep learning to design pilot and channel estimator for massive MIMO”, IEEE Transactions on Vehicular Technology, vol. 69, no. 5, pp. 5677-5682, 2020. doi:10.1109/TVT.2020.2980905
  15. L. Dai, J. Wang, Z. Wang, P. Tsiaflakis, and M. Moonen, “Spectrum- and energy-efficient OFDM based on simultaneous multi-channel reconstruction”, IEEE Transactions on Signal Processing, vol. 64, no. 23, pp. 6047-6059, 2013. doi:10.1109/TVT.2020.2980905
  16. M. F. Duarte and Y. C. Eldar, “Structured Compressed Sensing: From Theory to Applications”, IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4053-4085, 2011. doi:10.1109/TSP.2011.2161982
  17. J. F. C. Mota, N. Deligiannis, and M. R. D. Rodrigues, “Compressed sensing with prior information: Strategies, geometry, and bounds”, IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4472-4496, 2017. doi:10.1109/TIT.2017.2695614
  18. N. H. Hussein, C. T. Yaw, S. P. Koh, S. K. Tiong, and K. H. Chong, “A comprehensive survey on vehicular networking: Communications, applications, challenges, and upcoming research directions”, IEEE Access, vol. 10, pp. 86127-86180, 2022. doi:10.1109/ACCESS.2022.3198656
  19. H. A. Hassan, M. A. Mohamed, M. N. Shaaban, M. H. Essai, and O. A. Omer, “An efficient deep neural network channel state estimator for OFDM wireless systems”, Wireless Networks, pp. 1-11, 2023, https://doi.org/10.1007/s11276-023-03585-1">https://doi.org/10.1007/s11276-023-03585-1. doi: 10.1007/s11235-021-00754-5
  20. H. A. Hassan, M. A. Mohamed, M. H. Essai, H. Esmaiel, A. S. Mubarak, and O. A. Omer, “Effective deep learning-based channel state estimation and signal detection for OFDM wireless systems”, Journal of Electrical Engineering, vol.74, no. 3, pp. 167-176, 2023. doi:10.2478/jee-2023-0022
  21. M. A. Mohamed, H. A. Hassan, M. H. Essai, H. Esmaiel, A. S. Mubarak, and O. A. Omer, “Modified gate activation functions of Bi-LSTM-based SC-FDMA channel equalization”, Journal of Electrical Engineering, vol.74, no.4, pp. 256-266, 2023. doi:10.2478/jee-2023-0032
  22. M. A. Mohamed, H. A. Hassan, M. H. Essai, H. Esmaiel, A. S. Mubarak, and O. A. Omer, “Modified state activation functions of deep learning-based SC-FDMA channel equalization system”, EURASIP Journal on Wireless Communications and Networking, vol.1, pp. 1-26, 2023. doi:10.1186/s13638-023-02326-4
  23. C. Huang, A. F. Molisch, R. He, R. Wang, P. Tang, and Z. Zhong, “Machine-learning-based data processing techniques for vehicle-to-vehicle channel modeling,” IEEE Communications Magazine, vol. 57, no.11, pp.109-115, 2019. doi:10.1109/MCOM.001.1900124
  24. C. H. Cheng, Y. H. Huang, and H. C. Chen, “Enhanced channel estimation in OFDM systems with neural network technologies," Soft Computing, vol. 23, pp. 5185-5197, 2019. doi:10.1007/s00500-018-3185-y
  25. K. Gizzini and M. Chafii, “A survey on deep learning based channel estimation in doubly dispersive environments,” IEEE Access, vol. 10, pp. 70595-70619, 2022. doi:10.1109/ACCESS.2022.3188111
  26. L. Dai, J. Wang, Z. Wang, P. Tsiaflakis, and M. Moonen, “Time domain synchronous OFDM based on simultaneous multi-channel reconstruction”, IEEE International Conference on Communications (ICC), Budapest, Hungary, 09-13 June 2013, pp. 2984-2989. doi:10.1109/ICC.2013.6654997
  27. C. R. Tsai, Y. H. Liu, and A. Y. Wu, “Efficient compressive channel estimation for millimeter-wave large-scale antenna systems”, IEEE Transactions on Signal Processing, vol. 66, no. 9, pp. 2414-2428, 2018. doi:10.1109/TSP.2018.2811742
  28. A. Thakur and A. Konde, “Fundamentals of neural networks,” International Journal for Research in Applied Science and Engineering Technology, vol. 9, Issue VIII Aug 2021, pp.407-426.
DOI: https://doi.org/10.2478/jee-2024-0035 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 285 - 296
Submitted on: May 10, 2024
Published on: Aug 9, 2024
Published by: Slovak University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2024 Eman Abdel Rahim, Mohamed Hassan Essai, Ehab K. I. Hamad, published by Slovak University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.