Have a personal or library account? Click to login
Mutually coupled dual-stage RC feedback LNA for RF applications Cover

Mutually coupled dual-stage RC feedback LNA for RF applications

Open Access
|Jun 2024

References

  1. A. Balankutty and P. R. Kinget, “An Ultra-Low Voltage, Low-Noise, High Linearity 900-MHz Receiver with Digitally Calibrated In-Band Feed-Forward Interferer Cancellation in 65-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 46, no. 10, pp. 2268-2283, 2011, doi: 10.1109/JSSC.2011.2161425.
  2. M. Parvizi, K. Allidina and M. N. El-Gamal, “A Sub-mW, Ultra-Low-Voltage, Wideband Low-Noise Amplifier Design Technique,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 6, pp. 1111-1122, 2015, doi: 10.1109/TVLSI.2014.2334642.
  3. B. Guo and X. Li, “A 1.6–9.7 GHz CMOS LNA Linearized by Post Distortion Technique,” IEEE Microwave and Wireless Components Letters, vol. 23, no. 11, pp. 608-610, 2013, doi: 10.1109/LMWC.2013.2281426.
  4. M. Parvizi, K. Allidina and M. N. El-Gamal, “An Ultra-Low-Power Wideband Inductorless CMOS LNA With Tunable Active Shunt-Feedback,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 6, pp. 1843-1853, 2016, doi: 10.1109/TMTT.2016.2562003.
  5. J-F. Chang, and Y-S. Lin. “0.99 mW 3–10 GHz common-gate CMOS UWB LNA using T-match input network and self-body-bias technique.” Electronics Letters, vol. 47, no. 11, pp. 658-659, 2011, doi: 10.1049/el.2011.0619.
  6. J. Shim, T. Yang, and J. Jeong. “Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique.” Microelectronics Journal, vol. 44, no. 9, pp. 821-826, 2013, doi: https://doi.org/10.1016/j.mejo.2013.06.001.
  7. D. Kalra, V. Goyal and M. Srivastava. “A triple path noise cancellation LNA with transformer output using 45 nm CMOS technology.” Journal of Electrical Engineering, vol. 73, no. 5, pp 337-342, 2022, doi: https://doi.org/10.2478/jee-2022-0045.
  8. J. S. Walling, S. Shekhar and D. J. Allstot, “A gm-Boosted Current-Reuse LNA in 0.18μm CMOS,” 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, HI, USA, pp. 613-616, 2007 doi: 10.1109/RFIC.2007.380958.
  9. Y.-S. Lin, C. -C. Wang, G. -L. Lee and C. -C. Chen, “High-Performance Wideband Low-Noise Amplifier Using Enhanced π-Match Input Network,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 3, pp. 200-202, March 2014, doi: 10.1109/LMWC.2013.2293666.
  10. M. Khurram and S. M. R. Hasan, “A 3–5 GHz Current-Reuse gm-Boosted CG LNA for Ultrawideband in 130 nm CMOS,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 3, pp. 400-409, March 2012, doi: 10.1109/TVLSI.2011.2106229.
  11. J. Li et al., “Analysis and Design of a 2-40.5 GHz Low Noise Amplifier with Multiple Bandwidth Expansion Techniques,” IEEE Access, vol. 11, pp. 13501-13509, 2023, doi: 10.1109/ACCESS.2023.3243090.
  12. Y.S. Lin and K.S. Lan. “W-band low-noise amplifier using λ/2-spiral-inductor-based positive feedback technique in 90 nm CMOS.” Analog Integrated Circuits and Signal Processing, vol. 99, no. 3, pp. 679-691, 2019, doi: https://doi.org/10.1007/s10470-019-01411-3.
  13. H. Wang, L. Zhang and Z. Yu, “A Wideband Inductorless LNA with Local Feedback and Noise Cancelling for Low-Power Low-Voltage Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 8, pp. 1993-2005, 2010, doi: 10.1109/TCSI.2010.2042997.
  14. M. Kumar and V. K. Deolia. “Performance analysis of low power LNA using particle swarm optimization for wide band application.” AEU-International Journal of Electronics and Communications, vol. 111, pp. 152897, 2019, doi: https://doi.org/10.1016/j.aeue.2019.152897
  15. X. Yan, H. Luo, J. Zhang, S. -P. Gao and Y. Guo, “A 9-to-42-GHz High-Gain Low-Noise Amplifier Using Coupled Interstage Feedback in 0.15-μm GaAs pHEMT Technology,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 4, pp. 1476-1488, 2023, doi: 10.1109/TCSI.2023.3238391
  16. J. Y. -C. Liu, J. -S. Chen, C. Hsia, P. -Y. Yin and C. -W. Lu, “A Wideband Inductorless Single-to-Differential LNA in 0.18μm CMOS Technology for Digital TV Receivers,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 472-474, 2014, doi: 10.1109/LMWC.2014.2316495.
  17. J. Kim, S. Hoyos and J. Silva-Martinez, “Wideband Common-Gate CMOS LNA Employing Dual Negative Feedback with Simultaneous Noise, Gain, and Bandwidth Optimization,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 9, pp. 2340-2351, 2010, doi: 10.1109/TMTT.2010.2057790.
  18. H.-T. Chou, S. -W. Chen and H. -K. Chiou, “A low-power wideband dual-feedback LNA exploiting the gate-inductive bandwidth/gain-enhancement technique,” 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, pp. 1-3, 2013, doi: 10.1109/MWSYM.2013.6697349.
  19. C.-F. Liao and S.-I. Liu, “A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers,” IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 329-339, 2007, doi: 10.1109/JSSC.2006.889356.
DOI: https://doi.org/10.2478/jee-2024-0024 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 198 - 203
Submitted on: Feb 20, 2024
Published on: Jun 8, 2024
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2024 Manish Kumar, Dheeraj Kalra, Aasheesh Shukla, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.