Have a personal or library account? Click to login
Design and prototype of a 60 GHz variable gain RF amplifier with 90 nm CMOS for multi-gigabit-rate close proximity point-to-point communications Cover

Design and prototype of a 60 GHz variable gain RF amplifier with 90 nm CMOS for multi-gigabit-rate close proximity point-to-point communications

By: Ahmet Öncü  
Open Access
|Jun 2024

References

  1. “IEEE standard for high data rate wireless multi-media networks–amendment 1: High-rate close proximity point-to-point communications,” IEEE Std 802.15.3e-2017 (Amendment to IEEE Std 802.15.3-2016), pp. 1–178, 2017.
  2. D. Cassioli and N. Rendevski, “Modulation and detection strategies for 60 GHz UWB high-data rate wireless indoor communications,” in 2015 12th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), pp. 251–258, 2015. doi: 10.1109/TELSKS.2015.7357781
  3. B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 17–22, 2006. doi: 10.1109/JSSC.2005.858626
  4. M. Fujishima, “Low-power 60 GHz CMOS pulse communication,” in 2008 9th International Conference on Solid-State and Integrated-Circuit Technology, pp. 1348–1351, 2008. doi: 10.1109/ICSICT.2008.4734810
  5. R. Wu, R. Minami, Y. Tsukui, S. Kawai, Y. Seo, S. Sato, K. Kimura, S. Kondo, T. Ueno, N. Fajri, S. Maki, N. Nagashima, Y. Takeuchi, T. Yamaguchi, A. Musa, K. K. Tokgoz, T. Siriburanon, B. Liu, Y. Wang, J. Pang, N. Li, M. Miyahara, K. Okada, and A. Matsuzawa, “64-QAM 60-GHz CMOS transceivers for IEEE 802.11ad/ay,” IEEE Journal of Solid-State Circuits, vol. 52, no. 11, pp. 2871–2891, 2017. doi: 10.1109/JSSC.2017.2740264
  6. H. Gao, M. Matters-Kammerer, D. Milosevic, and P. G. M. Baltus, mm-Wave Low-Power Receiver, pp. 79–100. Cham: Springer International Publishing, 2018. doi: 10.1007/978-3-319-72980-07
  7. R. Ciocoveanu, R. Weigel, and V. Issakov, “A highly-integrated 60 GHz receiver for radar applications in 28nm bulk CMOS,” in 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), pp. 1–5, 2019. doi: 10.1109/COMCAS44984.2019.8958434
  8. A. Oncu, “A 1.2 V and 69 mW 60 GHz multi-channel tunable CMOS receiver design,” Radioengineering, vol. 24, no. 1, p. 143, 2015. doi: 10.13164/re.2015.0142
  9. B. Sadhu, A. Valdes-Garcia, J O. Plouchart, H. Ainspan, A. K. Gupta, M. Ferriss, M. Yeck, M. Sanduleanu, X. Gu, C. W. Baks, D. Liu, and D. Friedman, “A 250-mW 60-GHz CMOS transceiver SoC integrated with a four-element aip providing broad angular link coverage,” IEEE Journal of Solid-State Circuits, vol. 55, no. 6, pp. 1516–1529, 2020. doi: 10.1109/JSSC.2019.2943918
  10. H. Turkmen, M. S. S. Saolaija, and H. Arslan, “Wireless sensing - enabler of future wireless technologies,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 29, no. 1, pp. 1–17, 2021. doi.org/10.3906/elk-2101-10
  11. A. Oncu, K. Takano, and M. Fujishima, “8GBPS CMOS ASK modulator for 60GHz wireless communication,” in 2008 IEEE Asian Solid-State Circuits Conference, pp. 125–128, 2008. doi: 10.1109/ASSCC.2008.4708745
  12. S. Jang and C. Nguyen, “A 60 GHz 2.5 GBPS OOK modulator with data-dependent impedance cell for enhanced on/off isolation in 0.18 μm BICMOS process,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 4, pp. 244–246, 2015. doi: 10.1109/LMWC.2015.2400911
  13. A. Oncu and M. Fujishima, “49 mW 5 Gbit/s CMOS receiver for 60 GHz impulse radio,” Electronics letters, vol. 45, no. 17, pp. 889–890, 2009. doi: 10.1049/el.2009.0041
  14. X. Yu, H. Rashtian, S. Mirabbasi, P. P. Pande, and D. Heo, “An 18.7-Gb/s 60-GHz OOK demodulator in 65-nm CMOS for wireless network-on-chip,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 3, pp. 799–806, 2015. doi: 10.1109/TCSI.2014.2386751
  15. C. W. Byeon, C. H. Yoon, and C. S. Park, “A 67-mW 10.7-Gb/s 60-GHz OOK CMOS transceiver for short-range wireless communications,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 9, pp. 3391–3401, 2013. doi: 10.1109/TMTT.2013.2274962
  16. I. C. H. Lai and M. Fujishima, Design and modeling of millimeter-wave CMOS circuits for wireless transceivers: era of sub-100nm technology. Springer, 2008.
  17. C. Doan, S. Emami, A. Niknejad, and R. Brodersen, “Millimeter-wave CMOS design,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 144–155, 2005. doi: 10.1109/JSSC.2004.837251
  18. T. Cheung, J. Long, K. Vaed, R. Volant, A. Chinthakindi, C. Schnabel, J. Florkey, and K. Stein, “On-chip interconnect for mm-wave applications using an all-copper technology and wavelength reduction,” in 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC., pp. 396–501 vol.1, 2003. doi: 10.1109/ISSCC.2003.1234353
  19. I. C. H. Lai, Y. Kambayashi, and M. Fujishima, “60-GHz CMOS down-conversion mixer with slow-wave matching transmission lines,” in 2006 IEEE Asian Solid-State Circuits Conference, pp. 195–198, 2006. doi: 10.1109/ASSCC.2006.357884
  20. A. Oncu, B. B. M. W. Badalawa, and M. Fujishima, “60 GHz-pulse detector based on CMOS nonlinear amplifier,” in 2009 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 1–4, 2009. doi: 10.1109/SMIC.2009.4770488
  21. T. B. Kumar, K. Ma, and K. S. Yeo, “A 4 GHz 60 dB variable gain amplifier with tunable DC offset cancellation in 65 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 1, pp. 37–39, 2015. doi: 10.1109/LMWC.2014.2361676
  22. M. Parlak, M. Matsuo, and J. Buckwalter, “A 6-bit wideband variable gain amplifier with low group delay variation in 90nm CMOS,” in 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 147–150, 2012. doi: 10.1109/SiRF.2012.6160121
  23. Y. Wang, C. Hull, G. Murata, and S. Ravid, “A linear-in-dB analog baseband circuit for low power 60 GHz receiver in standard 65nm CMOS,” in 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 225–228, 2013. doi: 10.1109/RFIC.2013.6569567
  24. C. W. Byeon and C. S. Park, “A 60-GHz variable gain amplifier with low phase and op1dB variation,” Microwave and Optical Technology Letters, vol. 62, no. 2, pp. 696–700, 2020. doi: doi.org/10.1002/mop.32123
  25. W.-T. Li, Y.-C. Chiang, J.-H. Tsai, H.-Y. Yang, J.-H. Cheng, and T.-W. Huang, “60-GHz 5-bit phase shifter with integrated VGA phase-error compensation,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224–1235, 2013. doi: 10.1109/TMTT.2013.2244226
  26. J. G. Lee, T. H. Jang, G. H. Park, H. S. Lee, C. W. Byeon, and C. S. Park, “A 60-GHz four-element beam-tapering phased-array transmitter with a phase-compensated VGA in 65-nm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 2998–3009, 2019. doi: 10.1109/TMTT.2019.2907242
  27. D. Huang, L. Zhang, L. Zhang, and Y. Wang, “A 60-GHz, 15-dB gain range digitally controlled phase-inverting VGA with 0-dBm OP1 dB and 3° phase variation in 65-nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 819–821, 2018. doi: 10.1109/LMWC.2018.2854964
DOI: https://doi.org/10.2478/jee-2024-0021 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 173 - 180
Submitted on: Feb 1, 2024
Published on: Jun 8, 2024
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2024 Ahmet Öncü, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.