Have a personal or library account? Click to login

Channel tracking in IRS-based UAV communication systems using federated learning

Open Access
|Dec 2023

References

  1. H. Yang, J. Zhao, Z. Xiong, Y. Lam, S. Sun and L. Xiao, “Privacy-Preserving Federated Learning for UAV-Enabled Networks: Learning-Based Joint Scheduling and Resource Management,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 10, pp. 3144-3159, Oct. 2021, doi: 10.1109/JSAC.2021.3088655
  2. Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. S. Bahai, “Energy Efficient Federated Learning Over Wireless Communication Networks," IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp. 1935-1949, March 2021, doi: 10.1109/TWC.2020.3037554
  3. S. Al-Emadi and F. Al-Senaid, “Drone Detection Approach Based on Radio-Frequency Using Convolutional Neural Network,” IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), pp. 29-34, 2020, doi: 10.1109/ICIoT48696.2020.9089489
  4. B. Khamidehi and E. S. Sousa, “Federated Learning for Cellular-Connected UAVs: Radio Mapping and Path Planning,” GLOBECOM 2020 - 2020 IEEE Global Communications Conference, pp. 1-6, 2020, doi: 10.1109/GLOBECOM42002.2020.9322349
  5. A. Bouguettaya, H. Zarzour, and A. Kechida, “Deep learning techniques to classify agricultural crops through UAV imagery: a review,” Neural Computer & Application vol 34, pp.9511–9536, 2022, https://doi.org/10.1007/s00521-022-07104-9
  6. X. Song, Y. Zhao, Z. Wu, Z. Yang and J. Tang, “Joint Trajectory and Communication Design for IRS-Assisted UAV Networks,” IEEE Wireless Communications Letters, vol. 11, no. 7, pp. 1538-1542, July 2022, doi: 10.1109/LWC.2022.3179028
  7. W. Wang, Y. Li, Q. Xu, B. Peng, M. Lu and Q. Lu, “Design of IRS-assisted UAV System for Transmission Line Inspection,” IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, pp. 675-680, 2021, doi:10.1109ICCT52962.2021.9657890
  8. S. K. Singh, K. Agrawal, K. Singh, C.P. Li and Z. Ding, “NOMA Enhanced Hybrid RIS-UAV-Assisted Full-Duplex Communication System with Imperfect SIC and CSI,” IEEE Transactions on Communications, vol. 70, no. 11, pp. 7609-7627, Nov. 2022, doi: 10.1109/TCOMM.2022.3212729
  9. J. Feng, B. Zang, C. You, F. Chen, S. Chao, W. Che and Q. Xue, “Joint Passive Beamforming and Deployment Design for Dual Distributed-IRS Aided Communication," IEEE Transactions on Vehicular Technology, vol. 72, no. 10, pp. 13758-13763, Oct. 2023, doi: 10.1109/TVT.2023.3278699.
  10. X. Wang, F. Shu, Y. Wu, S. Yan, Y. Zhao, Q. Cheng and J. Wang, “Beamforming Design for IRS-and-UAV-aided Two-way Amplify-and-Forward Relay Networks,” IEEE Transactions on Communications, vol. 18, no. 11, pp. 1-6, 2022, https://doi.org/10.48550/arXiv.2306.00412
  11. C. Wang, X. Chen, J. An, Z. Xiong, C. Xing, N. Zhao and D. Niyato, “Covert Communication Assisted by UAV-IRS,” IEEE Transactions on Communications, vol. 71, no. 1, pp. 357-369, Jan. 2023, doi: 10.1109/TCOMM.2022.3220903.
  12. J. Zhou, S. Zhang and Q Lu, “A Survey on Federated Learning and its Applications for Accelerating Industrial Internet of Things,” IEEE Access, vol. 8, pp.140699-140725, 2020, https://doi.org/10.48550/arXiv.2104.10501
  13. S. Tang, W. Zhou, L. Chen, L. Lai, J. Xia, and L. Fan, “Battery-constrained federated edge learning in UAV-enabled IoT for B5G/6G networks,” Elsevier, vol 47, 101381, August 2021, doi: https://doi.org/10.1016/j.phycom.2021.101381
  14. A. I. Khan, and Y. Al-Mulla, “Unmanned Aerial Vehicle in the Machine Learning Environment,” Procedia Computer Science, vol.160, pp.46-53, ISSN0509, https://doi.org/10.1
  15. I. Sharma, A. Sharma and S.K Gupta, “Asynchronous and Synchronous Federated Learning-based UAVs,” IEEE 3rd International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP 2023), Faculty of Engineering, Kasetsart University, Bangkok, Thailand, pp.18-20, January 2023, 10.1109/ICASYMP56348.2023.10044951
  16. Y. S. Mandloi, and Y. Inada, “Machine Learning Approach for Drone Perception and Control”, Engineering Applications of Neural Networks. EANN 2019. Communications in Computer and Information Science, vol 1000. Springer, Cham. https://doi.org/10.1007/978-3-030-20257-636
  17. B. Taha and A. Shoufan, “Machine Learning-Based Drone Detection and Classification: State-of-the-Art in Research,” IEEE Access, vol. 7, pp. 138669-138682, 2019 doi:10.1109/ACCESS.2019.2942944.
  18. I. Sharma, S.K Gupta, A. Mishra and S. Askar, “Synchronous Federated Learning based Multi Unmanned Aerial Vehicles for Secure Applications,” Scalable Computing: Practice and Experience, vol. 24(3), pp. 191-201, 2023, DOI 10.12694/scpe.v24i3.2136
DOI: https://doi.org/10.2478/jee-2023-0060 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 521 - 531
Submitted on: Aug 8, 2023
Published on: Dec 14, 2023
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 Itika Sharma, Sachin Kumar Gupta, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.