Have a personal or library account? Click to login

References

  1. J. C. Moses, S. Adibi, N. Wickramasinghe, L. Nguyen, M. Angelova, and S. M. S. Islam, “Smartphone as a Disease Screening Tool: A Systematic Review,” Sensors, vol. 22, no. 10, Art. no. 10, Jan. 2022, doi: 10.3390/s22103787.
  2. P. Mukherjee, I. Bhattacharyya, M. Mullick, R. Kumar, N. D. Roy, and M. Mahmud, “iConDet: An Intelligent Portable Healthcare App for the Detection of Conjunctivitis,” in Applied Intelligence and Informatics, M. Mahmud, M. S. Kaiser, N. Kasabov, K. Iftekharuddin, and N. Zhong, Eds., in Communications in Computer and Information Science. Cham: Springer International Publishing, 2021, pp. 29-42, doi: 10.1007/978-3-030-82269-9_3.
  3. Z. Li et al., “Preventing corneal blindness caused by keratitis using artificial intelligence,” Nat Commun, vol. 12, no. 1, Art. no. 1, Jun. 2021, doi: 10.1038/s41467-021-24116-6.
  4. L. Wang et al., “Feasibility assessment of infectious keratitis depicted on slit-lamp and smartphone photographs using deep learning,” International Journal of Medical Informatics, vol. 155, p. 104583, Nov. 2021, doi: 10.1016/j.ijmedinf.2021.104583.
  5. Y. Hong and M. Hasegawa, “Study of minor dry-eye detection using smartphone camera based on deep learning,” in International Workshop on Advanced Imaging Technology (IWAIT) 2021, SPIE, Mar. 2021, pp. 621-626, doi: 10.1117/12.2590408.
  6. S. R. Abdani, M. A. Zulkifley, and A. M. Moubark, “Pterygium Tissues Segmentation using Densely Connected DeepLab,” in 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Apr. 2020, pp. 229-232, doi: 10.1109/ISCAIE47305.2020.9108822.
  7. S. R. Abdani, M. A. Zulkifley, and N. H. Zulkifley, “Group and Shuffle Convolutional Neural Networks with Pyramid Pooling Module for Automated Pterygium Segmentation,” Diagnostics, vol. 11, no. 6, Art. no. 6, Jun. 2021, doi: 10.3390/diagnostics11061104.
  8. M. A. Zulkifley, S. R. Abdani, and N. H. Zulkifley, “Pterygium-Net: a deep learning approach to pterygium detection and localization,” Multimed Tools Appl, vol. 78, no. 24, pp. 34563-34584, Dec. 2019, doi: 10.1007/s11042-019-08130-x.
  9. W. M. D. W. Zaki, M. M. Daud, A. H. Saad, A. Hussain, and H. A. Mutalib, “Towards Auto-mated Keratoconus Screening Approach using Lateral Segment Photographed Images,” in 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Mar. 2021, pp. 466-471, doi: 10.1109/IECBES48179.2021.9398781.
  10. D. Matuzevičius and A. Serackis, “Three-Dimensional Human Head Reconstruction Using Smartphone-Based Close-Range Video Photo-grammetry,” Applied Sciences, vol. 12, no. 1, Art. no. 1, Jan. 2022, doi: 10.3390/app12010229.
  11. R. Raghavendra, K. B. Raja, A. Pflug, B. Yang, and C. Busch, “3D face reconstruction and multimodal person identification from video captured using smart-phone camera,” in 2013 IEEE International Conference on Technologies for Homeland Security (HST), Nov. 2013, pp. 552-557, doi: 10.1109/THS.2013.6699063.
  12. K. Hu, Y. Zhong, and G. Wu, “Reconstruction of 3D Foot Model from Video Captured Using Smartphone Camera,” JFBI, vol. 8, no. 3, pp. 493-500, Jun. 2015, doi: 10.3993/jfbim00145.
  13. J. L. Lerma, I. Barbero-García, Á. Marqués-Mateu, and P. Miranda, “Smartphone-based video for 3D modelling: Application to infant’s cranial deformation analysis,” Measurement, vol. 116, pp. 299-306, Feb. 2018, doi: 10.1016/j.measurement.2017.11.019.
  14. R. S. Morris et al., “Accuracy of Dental Monitoring 3D digital dental models using photograph and video mode,” Am J Orthod Dentofacial Orthop, vol. 156, no. 3, pp. 420-428, Sep. 2019, doi: 10.1016/j.ajodo.2019.02.014.
  15. A. A. of Ophthalmology, 2022-2023 BCSC Section 8: External Disease and Cornea Print. American Academy of Ophthalmology, 2022.
  16. A. Breitbarth, T. Schardt, C. Kind, J. Brinkmann, P.-G. Dittrich, and G. Notni, “Measurement accu-racy and dependence on external influences of the iPhone X TrueDepth sensor,” in Photonics and Education in Measurement Science 2019, SPIE, Sep. 2019, pp. 27-33. doi: 10.1117/12.2530544.
  17. M. Vogt, A. Rips, and C. Emmelmann, “Compa-rison of iPad Pro®’s LiDAR and TrueDepth Capabilities with an Industrial 3D Scanning Solution,” Technologies, vol. 9, no. 2, Art. no. 2, Jun. 2021, doi: 10.3390/technologies9020025.
  18. A. Thurzo et al., “Smartphone-Based Facial Scan-ning as a Viable Tool for Facially Driven Ortho-dontics?,” Sensors, vol. 22, no. 20, Art. no. 20, Jan. 2022, doi: 10.3390/s22207752.
  19. S. Royo and M. Ballesta-Garcia, “An Overview of Lidar Imaging Systems for Autonomous Vehicles,” Applied Sciences, vol. 9, no. 19, Art. no. 19, Jan. 2019, doi: 10.3390/app9194093.
  20. B. Song et al., “Smartphone-Based LiDAR Appli-cation for Easy and Accurate Wound Size Measure-ment,” Journal of Clinical Medicine, vol. 12, no. 18, Art. no. 18, Jan. 2023, doi: 10.3390/jcm12186042.
  21. E. M. Mikhail, “Introduction to Modern Photogrammetry (WSE) / Najlacnejšie knihy.” Accessed: Oct. 28, 2023. [Online]. Available: https://www.najlacnejsieknihy.sk/kniha/introduction-to-modern-photogrammetry.html?gclid=Cj0KCQjw4vKpBhCZARIsAOKHoWTvVXJ78uMzh4PRbAIsO0GCgi2w12JadOhIqVtVBKgeolqW5CckN1kaAlNNEALw_wcB
  22. H. K. Surmen, “Photogrammetry for 3D Reconstruction of Objects: Effects of Geometry, Texture and Photographing,” Image Analysis and Stereology, vol. 42, no. 2, Art. no. 2, Jul. 2023, doi: 10.5566/ias.2887.
  23. “Best photogrammetry software in 2023: The ultimate guide,” Sculpteo. Accessed: Oct. 28, 2023. [Online]. https://www.sculpteo.com/en/3d-learning-hub/3d-printing-software/photogrammetry-software/
  24. F. Samosir and S. Riyadi, “Comparison of Smart-phone and DSLR Use in Photogrammetry,” in International Conference on Aesthetics and the Sciences of Art, Bandung, Indonesia: Bandung Institute of Technology, 2020, doi: 10.51555/338620.
  25. A. Thurzo, W. Urbanová, I. Neuschlová, D. Paouris, and M. Čverha, “Use of optical scanning and 3D printing to fabricate customized appliances for patients with craniofacial disorders,” Sminars in Orthodontics, vol. 2, no. 28, pp. 92-99, Jun. 2022, doi: 10.1053/j.sodo.2022.10.005.
  26. C. Epic Games, “RealityCapture - 3D Models from Photos and/or Laser Scans.” Accessed: Nov. 09, 2023. [Online]. https://www.capturingreality.com/
  27. Autodesk, “Meshmixer.” Accessed: Nov. 09, 2023. [Online]. Available: https://meshmixer.com/
  28. O. J. Grüsser, “J. E. Purkynĕ’s contributions to the physiology of the visual, the vestibular and the oculomotor systems,” Hum Neurobiol, vol. 3, no. 3, pp. 129-144, 1984.
  29. I. E. Haddioui, “Learner Behaviour Analysis through Eye Tracking,” 2012, Accessed: Oct. 29, 2023. [Online]. https://www.academia.edu/81178959/Learner_Behaviour_Analysis_through_Eye_Tracking
DOI: https://doi.org/10.2478/jee-2023-0059 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 513 - 520
Submitted on: Nov 10, 2023
Published on: Dec 14, 2023
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 Veronika Kurilová, Dominika Bemberáková, Matúš Kocián, Daniel Šterbák, Tomáš Knapčok, Miriam Palkovič, Samuel Hančák, Jarmila Pavlovičová, Miloš Oravec, Andrej Thurzo, Petr Kolář, Nora Majtánová, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.