Have a personal or library account? Click to login

A comparative study on real-time sitting posture monitoring systems using pressure sensors

By:
Open Access
|Dec 2023

References

  1. J. Withall, A. Stathi, M. Davis, J. Coulson, J. L. Thompson, and K. R. Fox, “Objective indicators of physical activity and sedentary time and associations with subjective well-being in adults aged 70 and over,” International Journal of Environmental Research and Public Health, vol. 11, no. 1, pp. 643-656, 2014, doi:10.3390/ijerph110100643
  2. M.-C. Tsai, E. Chu, and C. R, Lee, “An automated sitting posture recognition system utilizing pressure sensors,” Sensors, vol. 23, no. 13, pp. 5894, 2023, doi:10.3390/s23135894
  3. I. Wijegunawardana, R. Ranaweera, and R. Gopura, “Lower extremity posture assistive wearable devices: A review,” IEEE Transactions on Human-Machine Systems, vol. 53, no.1, pp. 98-112, 2023, doi:10.1109/THMS.2022.3216761
  4. A. Kulikajevas, R. Maskeliunas, and R. Damaševičius, “Detection of sitting posture using hierarchical image composition and deep learning,” PeerJ Computer Science, vol. 7, pp. e442, 2021, doi:10.7717/peerj-cs.442
  5. M. Taieb-Maimon, J. Cwikel, B. Shapira, and I. Orenstein, “The effectiveness of a training method using self-modeling webcam photos for reducing musculoskeletal risk among office workers using computers,” Applied Ergon, vol. 43, no. 2, pp. 376-385, 2021, doi:10.1016/j.apergo.2011.05.015
  6. J. Yan, and A. Wang, “iGuard: An intelligent sitting posture monitoring system with pressure sensors,” 2023 Third International Conference on Computer Vision and Pattern Analysis (ICCPA), 2023
  7. L. Li, G. Yang, Y. Li, D. Zhu, and L. He, “Abnormal sitting posture recognition based on multi-scale spatiotemporal features of skeleton graph,” Engineering Applications of Artificial Intelligence, vol. 123, pp. 106374, 2023, doi:10.1016/j.engappai.2023.106374
  8. S. Ma, W. H. Cho, C. H. Quan, and S. Lee, “A sitting posture recognition system based on 3-axis accelerometer,” 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2016, doi:10.1109/CIBCB.2016.7758131
  9. Z. Qian, A. Bowden, D. Zhang, J. Wan, W. Liu, X. Li, D. Baradoy, and D. T. Fullwood, “Inverse piezoresistive nanocomposite sensors for identifying human sitting posture,” Sensors, vol. 18, no. 6, pp. 1745, 2018, doi: 10.3390/s18061745
  10. L. Feng, Z. Li, and C. Liu, “Are you sitting right? Sitting posture recognition using RF signals”, 2019 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), 2019, doi:10.1109/PACRIM47961.2019.8985070
  11. Q. Hu, X. Tang, and W. Tang, “A smart chair sitting posture recognition system using flex sensors and FPGA implemented artificial neural network,” IEEE Sensors Journal, vol. 20, no. 14, pp. 8007-8016, 2020, doi:10.1109/JSEN.2020.2980207
  12. A. Anwarya, D. Cetinkaya, M. Vassalloc, and H. Bouchachia, “Smart-cover: A real-time sitting pos-ture monitoring system,” Sensors and Actuators A: Physical, vol. 317, pp. 112451, 2021, doi:10.1016/j.sna.2020.112451
  13. K. Bourahmoune, K. Ishac, and T. Amagasa, “Intelligent posture training: machine-learning-powered human sitting posture recognition based on a pressure-sensing IoT cushion,” Sensors, vol. 22, no. 14, pp. 5337, 2022, doi:10.3390/s22145337
  14. J. Roh, H. Park, K. J. Lee, J. Hyeong, S. Kim and B. Lee, “Sitting posture monitoring system based on a low-cost load cell using machine learning,” Sensors, vol. 18, no. 1, pp. 208, 2018, doi:10.3390/s18010208
  15. H. Jeong and W. Park, “Developing and evaluating a mixed sensor smart chair system for real-time posture classification: Combining pressure and distance sensors,” IEEE Journal of Biomedical and Health Informatics, vol. 25, pp. 1805-1813, 2020, doi:10.1109/JBHI.2020.3030096
  16. L. M. Ang, K. P. Seng, and M. Wachowicz, “Embedded intelligence and the data-driven future of application-specific internet of things for smart environments,” International Journal of Distributed Sensor Networks, vol. 18, no. 6, pp. 15501329221102371, 2022, doi:10.1177/15501329221102371
  17. J. Wang, B. Hafidh, H. Dong, and A. El Saddik, “Sitting posture recognition using a spiking neural network,” IEEE Sensors Journal, vol. 21, no. 2, pp. 1779-1786, 2020, doi:10.1109/JSEN.2020.3016611
  18. F. Luna-Perejón, J. M. Montes-Sánchez, L. Durán-López, A. Vazquez-Baeza, I. Beasley-Bohórquez, and J. L. Sevillano-Ramos, “IoT device for sitting posture classification using artificial neural networks,” Electronics, vol. 10, no. 15, pp. 1825, 2021, doi:10.3390/electronics10151825
  19. A. Wang, S. Zhao, C. Zheng, H. Chen, L. Liu, and G. Chen, “HierHAR: Sensor-based data-driven hierarchical human activity recognition,” IEEE Sensors Journal, vol. 21, no. 3, pp. 3353-3365, 2021, doi:10.1109/JSEN.2020.3023860
  20. S. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359, 2010, doi:10.1109/TKDE.2009.191
DOI: https://doi.org/10.2478/jee-2023-0055 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 474 - 484
Submitted on: Sep 26, 2023
Published on: Dec 14, 2023
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 Liang Zhao, Jingyu Yan, Aiguo Wang, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.