Have a personal or library account? Click to login

Preparation and characterization of graphene-based fluorine doped tin dioxide thin films via spray pyrolysis technique

Open Access
|Dec 2023

References

  1. S. Chandra Ray, “Electrical, Electronic and Magnetic Behaviours of F-Doped SnO2 Thin Film.” Bulletin of Materials Science, vol. 45, no. 3, 2022, https://doi.org/10.1007/s12034-022-02739-9
  2. A. Doyan, L. Muliyadi, S. Hakim, H. Munandar, M. Taufik, “The Effect of Dopant Material to Optical Properties: Energy Band Gap Tin Oxide Thin Film.” Journal of Physics: Conference Series, vol. 1816, no. 1, 2021, p. 012114, https://doi.org/10.1088/1742-6596/1816/1/012114
  3. C. Khelifi, A. Attaf, A. Yahia, M. Dahnoun, “Investigation of F Doped SnO2 Thin Films Properties Deposited via Ultrasonic Spray Technique for Several Applications.” Surfaces and Interfaces, vol. 15, 2019, pp. 244–249, https://doi.org/10.1016/j.surfin.2019.04.001
  4. H. Z. Asl and S. M. Rozati, “High-quality spray-deposited fluorine-doped tin oxide: effect of film thickness on structural, morphological, electrical, and optical properties,” Applied Physics A, vol. 125, no. 10, Oct. 2019, doi: 10.1007/s00339-019-2943-8
  5. B. Beiranvand, A.S. Sobolev “A Proposal for a Multi-Functional Tunable Dual-Band Plasmonic Absorber Consisting of a Periodic Array of Elliptical Grooves.” Journal of Optics, vol. 22, no. 10, Sept. 2020, p. 105005, https://doi.org/10.1088/2040-8986/abb2f3.
  6. G. Kiruthiga, K. S. Rajni, N. Geethanjali, T. Raguram, E. Nandhakumar, and N. S. Kumar, “SnO2: Investigation of optical, structural, and electrical properties of transparent conductive oxide thin films prepared by nebulized spray pyrolysis for photovoltaic applications,” Inorganic Chemistry Communications, vol. 145, p. 109968, Sep. 2022, doi: 10.1016/j.inoche.2022.109968.
  7. N. Suwannakham, A. Tubtimtae, and E. Wongrat, “Structural, linear/non-linear optical, optoelectrical, and electrical properties of novel crystalline antimony-doped tin oxide thin films synthesized by the chemical deposition method,” Physica B-condensed Matter, vol. 649, p. 414440, Oct. 2022, doi: 10.1016/j.physb.2022.414440.
  8. M. A. Millán-Franco, C. A. Rodríguez-Castañeda, P. M. Moreno-Romero, J. J. Prias-Barragán, O. A. Jaramillo-Quintero, and H. Hu, “A direct correlation between structural and morphological defects of TiO2 thin films on FTO substrates and photo-voltaic performance of planar perovskite solar cells,” Materials Science in Semiconductor Processing, vol. 161, p. 107452, Jul. 2023, doi: 10.1016/j.mssp.2023.107452.
  9. J. Liu, L. Li, Y. Um, H. Xu, C.C. Hsieh. “Optical Efficiency Modulation of Vertical Alignment Liquid Crystal Displays with Transparent Shielding and Storage Electrode.” Displays, vol. 77, 2023, p. 102407, doi: 10.1016/j.displa.2023.102407
  10. J. Zhou, X. Tian, R. Chen, W. Chen, X. Meng. “An Ultra-Thin Chemical Vapor Deposited Polymer Interlayer to Achieve Highly Improved Stability of Perovskite Solar Cell.” Chemical Engineering Journal, vol. 461, 2023, p. 141914, doi: 10.1016/j.cej.2023.141914.
  11. B. Zhu, H. Peng, Y. Tao, J. Wu, and X. Shi, “Highly transparent conductive F-doped SnO2 films prepared on polymer substrate by radio frequency reactive magnetron sputtering,” Thin Solid Films, vol. 756, p. 139360, Aug. 2022, doi: 10.1016/j.tsf.2022.139360
  12. C. Peng, Y. Li, Y. Wu, X. Zhang, M. Zou, J. Zhuang, “Electrical and optical properties of W-doped V2O5/FTO composite films fabricated by sol-gel method,” Infrared Physics & Technology, vol. 116, p. 103807, Aug. 2021, doi: 10.1016/j.infrared.2021.103807.
  13. H. Latif, J. Liu, D. Mo, R. Wang, J. Zeng, P.F. Zhai, “Effect of Target Morphology on Morphological, Optical and Electrical Properties of FTO Thin Film Deposited by Pulsed Laser Deposition for MAPbBr3 Perovskite Solar Cell,” Surfaces and Interfaces, vol. 24, p. 101117, Jun. 2021, doi: 10.1016/j.surfin.2021.101117
  14. X.L. Pinheiro, A. Vilanova, D. Mesquita, M. Monteiro. “Design of Experiments Optimization of Fluorine-Doped Tin Oxide Films Prepared by Spray Pyrolysis for Photovoltaic Applications.” Ceramics International, vol. 49, no. 8, 2023, pp. 13019-13030, doi: 10.1016/j.ceramint.2022.12.175.
  15. M. Saikia, T. Das, N. Dihingia, Y.-P. Zhao, L. F. O. Silva, and B. K. Saikia, “Formation of carbon quantum dots and graphene nanosheets from different abundant carbonaceous materials,” Diamond and Related Materials, vol. 106, p. 107813, Mar. 2020, doi: 10.1016/j.diamond.2020.107813.
  16. W. Xiao, B. Li, J. Yan, L. Wang, X. Huang, J. Gao “Three Dimensional Graphene Composites: Preparation, Morphology and Their Multi-Functional Applications.” Composites Part A: Applied Science and Manufacturing, vol. 165, 2023, p. 107335, doi: 10.1016/j.compositesa.2022.107335.
  17. S.A. Khaleel, E.K.I. Hamad, M.B. Saleh, “High-Performance Tri-Band Graphene Plasmonic Microstrip Patch Antenna Using Superstrate Double-Face Metamaterial for THz Communications.” Journal of Electrical Engineering, vol. 73, no. 4, 2022, pp. 226-236, doi:10.2478/jee-2022-0031.
  18. M.Y. Shen, W.Y. Liao, T.Q. Wang, W.M. Lai, “Characteristics and Mechanical Properties of Graphene Nanoplatelets-Reinforced Epoxy Nano-composites: Comparison of Different Dispersal Mechanisms,” Sustainability, vol. 13, no. 4, p. 1788, Feb. 2021, doi: 10.3390/su13041788.
  19. S.A. Khaleel, E.K.I. Hamad, N.O. Parchin, and M.B. Saleh. “Programmable Beam-Steering Capabilities Based on Graphene Plasmonic THz MIMO Antenna via Reconfigurable Intelligent Surfaces (RIS) for IOT Applications.” Electronics, vol. 12, no. 1, 2023, p. 164, doi:10.3390/electronics12010164
  20. S. A. Khaleel, E. K. I. Hamad, N. O. Parchin, and M. B. Saleh, “MTM-Inspired Graphene-Based THz MIMO Antenna Configurations Using Characteristic Mode Analysis for 6G/IOT Applications.” Electronics, vol. 11, no. 14, 2022, p. 2152, doi:10.3390/electronics11142152.
  21. A. Rahal, A. Benhaoua, M. Jlassi, and B. Benhaoua, “Structural, optical and electrical properties studies of ultrasonically deposited tin oxide (SnO2) thin films with different substrate temperatures,” Superlattices Microstructure., vol. 86, Oct. 2015, pp. 403-411, https://doi.org/10.1016/j.spmi.2015.08.003
  22. R.J. Deokate, S.M.Pawar, A.V. Moholkar, V.S. Sawant, “Spray deposition of highly transparent fluorine doped cadmium oxide thin films,” Applied Surface Science, vol. 254, no. 7, pp. 2187–2195, Jan. 2008, doi: 10.1016/j.apsusc.2007.09.006
  23. C. Gümüs, O.M. Ozkendir, H. Kavak, and Y. Ufuktepe, “Structural and optical properties of zinc oxide thin films prepared by spray pyrolysis method,” Journal of Optoelectronics and Advanced Materials, vol. 8, no. 1, pp. 299–303, Jan. 2006, https://doi.org/10.1088/2053-1591/ab06d4
  24. Z. Y. Banyamin, P. J. Kelly, G. T. West, and J. Boardman, “Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering,” Coatings, vol. 4, no. 4, pp. 732-746, Oct. 2014, doi: 10.3390/coatings4040732.
  25. R. Swapna, M. Ashok, G. Muralidharan, and M. C. S. Kumar, “Microstructural, electrical and optical properties of ZnO:Mo thin films with various thickness by spray pyrolysis,” Journal of Analytical and Applied Pyrolysis, vol. 102, pp. 68-75, Jul. 2013, doi: 10.1016/j.jaap.2013.04.001.
  26. C. Guillén and J. Herrero, “TCO/metal/TCO structu-res for energy and flexible electronics,” Thin Solid Films, vol. 520, no. 1, pp. 1-17, Oct. 2011, doi: 10.1016/j.tsf.2011.06.091
  27. A. Benhaoua, A. Rahal, B. Benhaoua, M. Jlassi, “Effect of Fluorine Doping on the Structural, Optical and Electrical Properties of SnO2 Thin Films Prepared by Spray Ultrasonic.” Superlattices and Microstructures, vol. 70, 2014, pp. 61-69, doi: 10.1016/j.spmi.2014.02.005.
  28. L. Chinnappa, K. Ravichandran, K. Saravana-kumar, G. Muruganantham, and B. Sakthivel, “The combined effects of molar concentration of the precursor solution and fluorine doping on the structural and electrical properties of tin oxide films,” J. Mater. Sci. Mater. Electron., vol. 22, no. 12, 23 Apr. 2011, pp. 1827–1834, https://doi.org/10.1007/s10854-011-0369-y
  29. G. Jiang, P. Cui, Y. Liu, G. Yang, Y. Lv, C. Fu, G. Zhang., “Influence of polarization Coulomb field scattering on the electrical properties of normally-off recessed gate AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor with ALD-Al2O3 gate dielectric stack,” Solid-state Electronics, vol. 201, p. 108579, Dec. 2022, doi: 10.1016/j.sse.2022.108579.
  30. I. R. Cisneros-Contreras, A. L. Muñoz-Rosas, and A. Rodríguez-Gómez, “Resolution improvement in Haacke’s figure of merit for transparent conductive films,” Results in Physics, vol. 15, p. 102695, Dec. 2019, doi: 10.1016/j.rinp.2019.102695.
  31. M. Naftaly, S. Das, J. Gallop, K. Pan, F. Alkhalil, D. Kariyapperuma, S. Constant, C. Ramsdale., “Sheet Resistance Measurements of Conductive Thin Films: A Comparison of Techniques,” Electronics, vol. 10, no. 8, p. 960, Apr. 2021, doi: 10.3390/electronics10080960.
  32. I.M. El Radaf, R.M. Abdelhameed. “Surprising Performance of Graphene Oxide/Tin Dioxide Composite Thin Films.” Journal of Alloys and Compounds, vol. 765, 2018, pp. 1174-1183, doi: 10.1016/j.jallcom.2018.06.277.
  33. W.Z. Samad, M.M. Salleh, A. Shafiee, M.A. Yarmo, “Optical and Electrical Properties of Fluorine Doped Tin Oxide Thin Films.” Journal of Materials Science: Materials in Electronics, vol. 29, no. 18, 2018, pp. 15299-15306, doi:10.1007/s10854-018-8795-8.
  34. H. Kim, R. C. Y. Auyeung, and A. Piqué, “F-doped SnO2thin films grown on flexible substrates at low temperatures by pulsed laser deposition,” Thin Solid Films, vol. 520, no. 1, pp. 497–500, 2011. https://doi.org/10.1016/j.tsf.2011.07.025
  35. A. Purwanto, H. Widiyandari, R. Suryana, and A. Jumari, “Improving the performance of fluorine-doped tin oxide by adding salt,” Thin Solid Films, vol. 586, pp. 41–45, 2015, https://doi.org/10.1016/j.tsf.2015.04.044.
  36. R. Thomas, T. Mathavan, M.A. Jothirajan, H.H. Somaily, “An Effect of Lanthanum Doping on Physical Characteristics of FTO Thin Films Coated by Nebulizer Spray Pyrolysis Technique.” Optical Materials, vol. 99, 2020, p. 109518, doi: 10.1016/j.optmat.2019.109518.
  37. Z. Mahmoudiamirabad and H. Eshghi, “Achievements of high figure of merit and infrared reflectivity in SnO2: F thin films using spray pyrolysis technique,” Superlattices and Micro-structures, vol. 152, p. 106855, Apr. 2021, doi: 10.1016/j.spmi.2021.106855
  38. C. C. Villarreal, J. I. Sandoval, P. Ramnani, T. Terse-Thakoor, D. Vi, A. Mulchandani, “Graphene Compared to Fluorine-Doped Tin Oxide as Transparent Conductor in ZnO Dye-Sensitized Solar Cells.” Journal of Environmental Chemical Engineering, vol. 10, no. 3, 1 June 2022, p. 107551, https://doi.org/10.1016/j.jece.2022.107551
DOI: https://doi.org/10.2478/jee-2023-0054 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 463 - 473
Submitted on: Aug 12, 2023
Published on: Dec 14, 2023
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 Sherif A. Khaleel, Mahmoud Shaban, Mohammed F. Alsharekh, Ehab K. I. Hamad, Mohamed I. M. Shehata, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.