Y. Masuyama, M. Togami and T. Komatsu, “Consistency-aware multi-channel speech enhancement using deep neural networks”, Proceedings 2020 IEEE International Acoustics, Speech and Signal Processing Conference (ICASSP), pp. 821-825, 2020. DOI: 10.1109/ICASSP40776.2020.9053501
S. Gannot, E. Vincent, S. Markovich-Golan and A. Ozerov, “A consolidated perspective on multi microphone speech enhancement and source separation”, IEEE/ACM Trans. on Audio, Speech, and Language Processing, vol. 25, no. 4, pp. 692-730, 2017. DOI: 10.1109/TASLP.2016.2647702
C. Rascon, “Characterization of Deep Learning-Based Speech-Enhancement Techniques in Online Audio Processing Applications”, Sensors, vol. 23, no. 9, p. 4394, 2023. DOI: https://doi.org/10.3390/s23094394
H. Garg, B. Sharma, S. Shekhar and R. Agarwal, “Spoofing detection system for e-health digital twin using Efficient Net Convolution Neural Network”, Multimedia Tools and Applications, vol. 81, no. 16, pp. 26873-26888, 2022. DOI: https://doi.org/10.1007/s11042-021-11578-5
D. Agarwal and A. Bansal, “Fingerprint liveness detection through fusion of pores perspiration and texture features”, J. King Saud University-Computer and Information Sciences, vol. 34, no. 7, pp. 4089-4098, 2020. DOI: https://doi.org/10.1016/j.jksuci.2020.10.003
G. Gosztolya and T. Grósz, “Domain adaptation of deep neural networks for automatic speech recognition via wireless sensors”, Journal of Electrical Engineering, vol. 67, no. 2, pp. 124-130, 2016. DOI: https://doi.org/10.1007/s11042-022-13056-y
S. Shekhar, D. K. Sharma, M. M. Sufyan Beg, “Hindi Roman linguistic framework for retrieving transliteration variants using bootstrapping”, Procedia Computer Science, vol. 125, pp. 59-67, 2018. DOI: 10.1016/j.procs.2017.12.010
R. Martinek, M. Kelnar, J. Vanus, P. Bilik and J. Zidek, “A robust approach for acoustic noise suppression in speech using ANFIS”, Journal of electrical engineering, vol. 66, no. 6, pp. 301-310, 2015. DOI: https://doi.org/10.2478/jee-2015-0050
Y. Tsao and Y. H. Lai, “Generalized maximum a posteriori spectral amplitude estimation for speech enhancement”, Speech Communication, vol. 76, pp. 112-126, 2016. DOI: https://doi.org/10.1016/j.specom.2015.10.003
J. Cheng, R. Liang and L. Zhao, “DNN-based speech enhancement with self-attention on feature dimension”, Multimedia Tools and Applications, vol. 79, pp. 32449-32470, 2020. DOI: https://doi.org/10.1007/s11042-020-09345-z
S. Boll, “Suppression of acoustic noise in speech using spectral subtraction”, IEEE Trans. on acoustics, speech, and signal processing, vol. 27, no. 2, pp. 113-120, 1979. DOI: 10.1109/TASSP.1979.1163209
P. Scalart, “Speech enhancement based on a priori signal to noise estimation”, Proceedings 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 629-632, 1996. DOI: 10.1109/ICASSP.1996.543199
Y. Ephraim and D. Malah, “Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator”, IEEE Trans. on acoustics, speech, and signal processing, Vol. 32, no. 6, pp. 1109-1121, 1984. DOI: 10.1109/TASSP.1984.1164453
C. Lan, Y. Wang, L. Zhang, C. Liu and X. Lin, “Research on Speech Enhancement Algorithm of Multiresolution Cochleagram Based on Skip Connection Deep Neural Network”, Sensors, vol. 2022, 2022. DOI: https://doi.org/10.1155/2022/5208372
Z. Kang, Z. Huang and C. Lu, “Speech Enhancement Using U-Net with Compressed Sensing”, App. Sciences, vol. 12, no. 9, p. 4161, 2022. DOI: https://doi.org/10.3390/app12094161
O. Ronneberger, P. Fischer and T. Brox, “U-net: Convolutional networks for biomedical image segmentation”, Proceedings 2015 International Conference on Medical image computing and computer-assisted intervention, (Springer Cham.), pp. 234-241, 2015. DOI: https://doi.org/10.1007/978-3-319-24574-4_28
C. Geng and L. Wang, “End-to-end speech enhancement based on discrete cosine transform”, Proceedings 2020 IEEE International Artificial Intelligence and Computer Applications Conf. (ICAICA), pp. 379-383, 2020. DOI: 10.1109/ICAICA50127.2020.9182513
D. Stoller, S. Ewert and S. Dixon S, “Wave-unet: A multi-scale neural network for end-to-end audio source separation”, arXiv preprint arXiv:1806.03185, 2018. DOI: https://doi.org/10.48550/arXiv.1806.03185
B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications”, Proceedings of the IEEE, vol. 63, no. 12, pp. 1692-1716, 1975. DOI: 10.1109/PROC.1975.10036
M. Ravanelli, T. Parcollet, P. Plantinga, A. Rouhe, S. Cornell, L. Lugosch, and Y. Bengio, “SpeechBrain: A general-purpose speech toolkit”, arXiv preprint arXiv:2106.04624, 2021. DOI: https://doi.org/10.48550/arXiv.2106.04624
V. Panayotov, G. Chen, D. Povey and S. Khudanpur, “Librispeech: an asr corpus based on public domain audio books”, Proceedings IEEE International Acoustics, Speech and Signal Processing Conference (ICASSP), pp. 5206-5210, 2015. DOI: 10.1109/ICASSP.2015.7178964
P. Loizou and Y. Hu, “NOIZEUS: A noisy speech corpus for evaluation of speech enhancement algorithms”, Speech Communication vol. 49, pp. 588-601, 2007. DOI: 10.1016/j.specom.2006.12.006
I. T. Recommendation, “Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs”, Rec. ITU-T. P. 862, 2001.
M. Al-Akhras, K. Daqrouq and A. R. Al-Qawasmi, “Perceptual evaluation of speech enhancement,” In 2010 7th International Multi-Conference on Systems, Signals and Devices, pp. 1-6, IEEE, 2010. DOI: 10.1109/SSD.2010.5585514
M. Kolbaek, Z. H. Tan and J. Jensen, “On the relationship between short-time objective intelligibility and short-time spectral-amplitude mean-square error for speech enhancement”, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27, no. 2, pp. 283-295, 2018. DOI: 10.1109/TASLP.2018.2877909
R. Giri, U. Isik and A. Krishnaswamy, “Attention wave-u-net for speech enhancement”, IEEE Workshop 2019 Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 249-253, 2019. DOI: 10.1109/WASPAA.2019.8937186