Have a personal or library account? Click to login

Performance analysis of speech enhancement using spectral gating with U-Net

Open Access
|Oct 2023

References

  1. Y. Masuyama, M. Togami and T. Komatsu, “Consistency-aware multi-channel speech enhancement using deep neural networks”, Proceedings 2020 IEEE International Acoustics, Speech and Signal Processing Conference (ICASSP), pp. 821-825, 2020. DOI: 10.1109/ICASSP40776.2020.9053501
  2. P. C. Loizou, Speech enhancement: theory and practice, 1st ed. Boca Raton: CRC press, pp. 1-10, 2007.
  3. S. Gannot, E. Vincent, S. Markovich-Golan and A. Ozerov, “A consolidated perspective on multi microphone speech enhancement and source separation”, IEEE/ACM Trans. on Audio, Speech, and Language Processing, vol. 25, no. 4, pp. 692-730, 2017. DOI: 10.1109/TASLP.2016.2647702
  4. C. Rascon, “Characterization of Deep Learning-Based Speech-Enhancement Techniques in Online Audio Processing Applications”, Sensors, vol. 23, no. 9, p. 4394, 2023. DOI: https://doi.org/10.3390/s23094394
  5. H. Garg, B. Sharma, S. Shekhar and R. Agarwal, “Spoofing detection system for e-health digital twin using Efficient Net Convolution Neural Network”, Multimedia Tools and Applications, vol. 81, no. 16, pp. 26873-26888, 2022. DOI: https://doi.org/10.1007/s11042-021-11578-5
  6. D. Agarwal and A. Bansal, “Fingerprint liveness detection through fusion of pores perspiration and texture features”, J. King Saud University-Computer and Information Sciences, vol. 34, no. 7, pp. 4089-4098, 2020. DOI: https://doi.org/10.1016/j.jksuci.2020.10.003
  7. G. Gosztolya and T. Grósz, “Domain adaptation of deep neural networks for automatic speech recognition via wireless sensors”, Journal of Electrical Engineering, vol. 67, no. 2, pp. 124-130, 2016. DOI: https://doi.org/10.1007/s11042-022-13056-y
  8. S. Shekhar, D. K. Sharma, M. M. Sufyan Beg, “Hindi Roman linguistic framework for retrieving transliteration variants using bootstrapping”, Procedia Computer Science, vol. 125, pp. 59-67, 2018. DOI: 10.1016/j.procs.2017.12.010
  9. R. Martinek, M. Kelnar, J. Vanus, P. Bilik and J. Zidek, “A robust approach for acoustic noise suppression in speech using ANFIS”, Journal of electrical engineering, vol. 66, no. 6, pp. 301-310, 2015. DOI: https://doi.org/10.2478/jee-2015-0050
  10. Y. Tsao and Y. H. Lai, “Generalized maximum a posteriori spectral amplitude estimation for speech enhancement”, Speech Communication, vol. 76, pp. 112-126, 2016. DOI: https://doi.org/10.1016/j.specom.2015.10.003
  11. J. Cheng, R. Liang and L. Zhao, “DNN-based speech enhancement with self-attention on feature dimension”, Multimedia Tools and Applications, vol. 79, pp. 32449-32470, 2020. DOI: https://doi.org/10.1007/s11042-020-09345-z
  12. S. Boll, “Suppression of acoustic noise in speech using spectral subtraction”, IEEE Trans. on acoustics, speech, and signal processing, vol. 27, no. 2, pp. 113-120, 1979. DOI: 10.1109/TASSP.1979.1163209
  13. P. Scalart, “Speech enhancement based on a priori signal to noise estimation”, Proceedings 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 629-632, 1996. DOI: 10.1109/ICASSP.1996.543199
  14. Y. Ephraim and D. Malah, “Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator”, IEEE Trans. on acoustics, speech, and signal processing, Vol. 32, no. 6, pp. 1109-1121, 1984. DOI: 10.1109/TASSP.1984.1164453
  15. C. Lan, Y. Wang, L. Zhang, C. Liu and X. Lin, “Research on Speech Enhancement Algorithm of Multiresolution Cochleagram Based on Skip Connection Deep Neural Network”, Sensors, vol. 2022, 2022. DOI: https://doi.org/10.1155/2022/5208372
  16. Z. Kang, Z. Huang and C. Lu, “Speech Enhancement Using U-Net with Compressed Sensing”, App. Sciences, vol. 12, no. 9, p. 4161, 2022. DOI: https://doi.org/10.3390/app12094161
  17. O. Ronneberger, P. Fischer and T. Brox, “U-net: Convolutional networks for biomedical image segmentation”, Proceedings 2015 International Conference on Medical image computing and computer-assisted intervention, (Springer Cham.), pp. 234-241, 2015. DOI: https://doi.org/10.1007/978-3-319-24574-4_28
  18. C. Geng and L. Wang, “End-to-end speech enhancement based on discrete cosine transform”, Proceedings 2020 IEEE International Artificial Intelligence and Computer Applications Conf. (ICAICA), pp. 379-383, 2020. DOI: 10.1109/ICAICA50127.2020.9182513
  19. D. Stoller, S. Ewert and S. Dixon S, “Wave-unet: A multi-scale neural network for end-to-end audio source separation”, arXiv preprint arXiv:1806.03185, 2018. DOI: https://doi.org/10.48550/arXiv.1806.03185
  20. C. Macartney and T. Weyde, “Improved speech enhancement with the wave-u-net”, arXiv preprint arXiv:1811.11307, 2018. DOI: https://doi.org/10.48550/arXiv.1811.11307
  21. B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications”, Proceedings of the IEEE, vol. 63, no. 12, pp. 1692-1716, 1975. DOI: 10.1109/PROC.1975.10036
  22. M. Ravanelli, T. Parcollet, P. Plantinga, A. Rouhe, S. Cornell, L. Lugosch, and Y. Bengio, “SpeechBrain: A general-purpose speech toolkit”, arXiv preprint arXiv:2106.04624, 2021. DOI: https://doi.org/10.48550/arXiv.2106.04624
  23. V. Panayotov, G. Chen, D. Povey and S. Khudanpur, “Librispeech: an asr corpus based on public domain audio books”, Proceedings IEEE International Acoustics, Speech and Signal Processing Conference (ICASSP), pp. 5206-5210, 2015. DOI: 10.1109/ICASSP.2015.7178964
  24. P. Loizou and Y. Hu, “NOIZEUS: A noisy speech corpus for evaluation of speech enhancement algorithms”, Speech Communication vol. 49, pp. 588-601, 2007. DOI: 10.1016/j.specom.2006.12.006
  25. I. T. Recommendation, “Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs”, Rec. ITU-T. P. 862, 2001.
  26. M. Al-Akhras, K. Daqrouq and A. R. Al-Qawasmi, “Perceptual evaluation of speech enhancement,” In 2010 7th International Multi-Conference on Systems, Signals and Devices, pp. 1-6, IEEE, 2010. DOI: 10.1109/SSD.2010.5585514
  27. M. Kolbaek, Z. H. Tan and J. Jensen, “On the relationship between short-time objective intelligibility and short-time spectral-amplitude mean-square error for speech enhancement”, IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27, no. 2, pp. 283-295, 2018. DOI: 10.1109/TASLP.2018.2877909
  28. R. Giri, U. Isik and A. Krishnaswamy, “Attention wave-u-net for speech enhancement”, IEEE Workshop 2019 Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 249-253, 2019. DOI: 10.1109/WASPAA.2019.8937186
DOI: https://doi.org/10.2478/jee-2023-0044 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 365 - 373
Submitted on: Jul 26, 2023
Published on: Oct 21, 2023
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 Jharna Agrawal, Manish Gupta, Hitendra Garg, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.