C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum cellular automata,” Nanotechnology, vol. 4, no. 3, pp.256–264, 1993, doi: https://doi.org/10.1088/0957-4484/4/1/004.
I. Amlani, A. O. Orlov, G. Toth, G. H. Bernstein, C. S. lent, and G. L. Snider, “Digital logic gate using quantum-dot cellular automata,” Science, vol. 284, no. 5412, pp. 289-291, 1999, doi: 10.1126/science.284.5412.289.
A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, and G. L. Snider, “Realization of a functional cell for quantum-dot cellular automata,” Science, vol. 277, no. 5328, pp. 928-930, 1997, doi: 10.1126/science.277.5328.928.
P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” Journal of Applied Physics, vol. 75, 1994, pp. 1818-1825, doi: https://doi.org/10.1063/1.356375.
C. S. Lent and P. D. Tougaw, “A device architecture for computing with quantum dots,” Proceedings of the IEEE, vol. 85, no. 4, pp. 541-557, 1997, doi: 10.1109/5.573740.
K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, “QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata,” IEEE Transactions on Nano-technology, vol. 3, no. 1, pp. 26-31, 2004, doi:10.1109/TNANO.2003.820815.
S. Srivastava, A. Asthana, S. Bhanja, and S. Sarkar, “QCAPro-An error-power estimation tool for QCA circuit design,” 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp. 2377-2380, 2011, doi: 10.1109/ISCAS.2011.5938081.
F. S. Torres, R. Wille, P. Niemann, and R. Drechsler, “An energy-aware model for the logic synthesis of quantum-dot cellular automata,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 12, pp. 3031-3041, 2018, doi: 10.1109/TCAD.2018.2789782.
S. Angizi et al., “Efficient quantum dot cellular automata memory architectures based on the new wiring approach,” Journal of Computational and Theoretical Nanoscience, vol. 11, no. 11, pp. 2318-2328, 2014, doi: https://doi.org/10.1166/jctn.2014.3646
S. Angizi, et al., “Designing quantum-dot cellular automata counters with energy consumption analysis,” Microprocessors and Microsystems, vol. 39, no. 7, pp. 512-520, 2015, doi: https://doi.org/10.1016/j.micpro.2015.07.011.
S. Pandey, S. Singh and S. Wairya, “Designing an efficient approach for JK and T-flipflop with power dissipation analysis using QCA,” International Journal of VLSI Design & Communication Systems, vol. 7, no. 3, pp. 29-48, 2016.
A. N. Bahar, R. Laajimi, M. Abdullah-Al-Shaf, and K. Ahmed, “Toward efficient design of Flipflops in quantum-dot cellular automata with power dissipation analysis,” International Journal of Theoretical Physics, vol. 57, pp. 3419-3428, 2018, doi: https://doi.org/10.1007/s10773-018-3855-7.
A. H. Majeed, E. Alkaldy, M. S. Zainal, and D. B. M. Nor, “Synchronous counter design using novel level sensitive T-FF in QCA technology,” Journal of Low Power Electronics and Applications, vol. 9, no. 3, 2019. doi: https://doi.org/10.3390/jlpea9030027.
A. Yan, R. Liu, Z. Huang, P. Girard, and X. Wen, “Designs of level-sensitive T flip-flops and polar encoders based on two XOR/XNOR gates,” Electronics, vol. 11, no. 10, 2022, doi: https://doi.org/10.3390/electronics11101658
S. Husain and N. Gupta, “Harnessing fault tolerant capabilities of USE clocking scheme for designing QCA flip-flops,” 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 2023, pp. 104-109.