Have a personal or library account? Click to login
A novel data-driven technique to produce multi- sensor virtual responses for gas sensor array-based electronic noses Cover

A novel data-driven technique to produce multi- sensor virtual responses for gas sensor array-based electronic noses

Open Access
|May 2023

References

  1. K. C. Persaud, S. M. Khaffaf, J. S. Payne, A. M. Pisanelli, D.-H. Lee, and H.-G. Byun, ”Sensor array techniques for mimicking the mammalian olfactory system”, Sensors and Actuators B: Chemical, vol. 36, no. 1-3, pp. 267-273, 1996.
  2. B. A. Kaplan and A. Lansner, ”A spiking neural network model of self- organized pattern recognition in the early mammalian olfactory system”, Frontiers in neural circuits, vol. 8, pp. 5, 2014.
  3. Y.-J. Liu, M. Zeng, and Q.-H. Meng, ”Electronic nose using a bio- inspired neural network modeled on mammalian olfactory system for chinese liquor classification”, Review of Scientific Instruments, vol. 90, no. 2, pp. 025001, 2019.
  4. A. Kumar and G. P. Hancke, ”Energy efficient environment monitoring system based on the ieee 802.15. 4 standard for low cost requirements”, IEEE Sensors Journal, vol. 14, no. 8, pp. 2557-2566, 2014.
  5. Z. Ye, J. Wang, H. Hua, X. Zhou, and Q. Li, ”Precise detection and quantitative prediction of blood glucose level with an electronic nose system”, IEEE Sensors Journal, 2022.
  6. Q. Wang, K. Song, and T. Guo, ”Portable vehicular electronic nose system for detection of automobile exhaust”,,.
  7. U. Dorji, T. Pobkrut, and T. Kerdcharoen, ”Electronic nose based wireless sensor network for soil monitoring in precision farming system”, 2017 9th International Conference on Knowledge and Smart Technology, vol. no. KST, pp. IEEE, 182-186, 2017.
  8. M. J. Oates, J. D. Gonzalez-Teruel, M. C. Ruiz-Abellon, A. Guillamon-Frutos, J. A. Ramos, and R. Torres-Sanchez, ”Using a low-cost components e-nose for basic detection of different foodstuffs”, IEEE Sensors Journal, vol. 22, no. 14, pp. 13 872-13 881, 2022.
  9. P. Lorwongtragool, C. Wongchoosuk, and T. Kerdcharoen, ”Portable electronic nose for beverage quality assessment”, The 8th Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, vol. no. ECTI, pp. AssociationofThailand-ConferenceIEEE, 163-166, 2011.
  10. T. Eamsa-ard, M. M. Swe, T. Seesaard, and T. Kerdcharoen, ”Development of electronic nose for evaluation of fragrance and human body odor in the cosmetic industry”, 2018 IEEE 7th global Conference on consumer Electronics,vol.no. GCCE, pp. IEEE, 363-364, 2018.
  11. S. Siyang, P. Lorwongtragool, A. Noosidum, C. Wongchoosuk, and T. Kerdcharoen, ”Development and application of electronic nose for agricultural robot”, 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, IEEE, pp. 1-4, 2013.
  12. W. M. H. Khalaf, ”Electronic nose system for safety monitoring at refineries”, Journal of Engineering and Sustainable Development, vol. 16, no. 4, pp. 220-228, 2012.
  13. A. Wilson, ”Electronic-nose applications in forensic science and for analysis of volatile biomarkers in the human breath”, Journal of Forensic Science and Criminology, vol. 1, no. 1, pp. 1-21, 2014.
  14. D. Haeringer and J. Goschnick, ”Characterization of smelling contaminations on textiles using a gradient microarray as an electronic nose”, Sensors and Actuators B: Chemical, vol. 132, no. 2, pp. 644-649, 2008.
  15. W. Xuan, L. Zheng, B. R. Bunes, N. Crane, F. Zhou, and L. Zang, ”Engineering solutions to breath tests based on an e-nose system for silicosis screening and early detection in miners”, Journal of Breath R¿—esearch, vol. 16, no. 3, pp. 036001, 2022.
  16. K. Persaud and G. Dodd, ”Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose”, Nature, vol. 299, no. 5881, pp. 352-355, 1982.
  17. Y. Efremenko and V. M. Mirsky, ”Virtual sensor array consisting of a single sensor element with variable affinity: An application for analysis of fish freshness”, Sensors and Actuators B: Chemical, vol. 241, pp. 652-657, 2017.
  18. A. B. Far, F. Flitti,B.Guo,and A. Bermak,”Abio-inspired pattern recognition system for tin-oxide gas sensor applications”, IEEE Sensors Journal, vol. 9, no. 6, pp. 713-722, 2009.
  19. D. Li, B. Zhu, K. Pang, Q. Zhang, M. Qu, W. Liu, Y. Fu, and J. Xie, ”Virtual sensor array based on piezoelectric cantilever resonator for identification of volatile organic compounds”, ACS sensors, 2022.
  20. A. Mishra, N. Rajput, and G. Han, ”NDSRT: an efficient virtual multi-sensor response transformation for classification of gases/odors”, IEEE Sensors Journal, vol. 17, no. 11, pp. 3416-3421, 2017.
  21. S. N. Chaudhri, N. S. Rajput, and A. Mishra, ”A novel principal component-based virtual sensor approach for efficient classification of gases/odors”, Journal of Electrical Engineering, vol. 73, no. 2, pp. 108-115, 2022.
  22. N. Rajput, R. Das, V. Mishra, K. Singh, and R. Dwivedi, ”A neural net implementation of spca pre-processor for gas/odor classification using the responses of thick film gas sensor array”, Sensors and Actuators B: Chemical, vol. 148, no. 2, pp. 550-558, 2010.
  23. C.-C. Chang and C.-J. Lin, ”Libsvm: a library for support vector machines”, ACM transactions on intelligent systems and technology, vol. no. TIST, pp. vol2, no3, 1-27, 2011.
  24. T. Hastie, S. Rosset, J. Zhu, and H. Zou, ”Multi-class adaboost”, Statistics and its Interface, vol. 2, no. 3, pp. 349-360, 2009.
DOI: https://doi.org/10.2478/jee-2023-0013 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 102 - 108
Submitted on: Feb 8, 2023
|
Published on: May 8, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2023 Sumit Srivastava, Shiv Nath Chaudhri, Navin Singh Rajput, Ashutosh Mishra, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.