Have a personal or library account? Click to login
A triple path noise cancellation LNA with transformer output using 45 nm CMOS technology Cover

A triple path noise cancellation LNA with transformer output using 45 nm CMOS technology

Open Access
|Nov 2022

References

  1. [1] B, Razavi, Design of Analog CMOS Integrated Circuits, New York: Tata McGraw Hill, 2016.
  2. [2] A. Chaturvedi, M. Kumar, R. S. Meena, and G. K. Sharma, “Wideband ring mixer for band #1 of MB-OFDM systems in 180 nm CMOS technology”, Journal of Electrical Engineering, no. 5, pp. 323–329, 2021.10.2478/jee-2021-0045
  3. [3] A. Shukla, “Intelligent reflected surfaces assisted code domain non-orthogonal multiple access scheme”, Journal of Electrical Engineering, no. 5, pp. 343–347, 2021.10.2478/jee-2021-0048
  4. [4] F. Zhang and P. R. Kinget, “Low-power programmable gain CMOS distributed LNA”, IEEE Journal of Solid-State Circuits, no. 6, pp. 1333–1343, 2006.
  5. [5] M. Kumar and V. K. Deolia, “A wideband design analysis of LNA utilizing complimentary common gate stage with mutually coupled common source stage”, Analog Integrated Circuits and Signal Processing, no. 3, pp. 575–585, 2019.10.1007/s10470-018-1355-6
  6. [6] C.-F. Liao and S.-I. Liu, “A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers”, IEEE Journal of Solid-State Circuits, no. 2, pp. 329–339, 2007.10.1109/JSSC.2006.889356
  7. [7] H. Yu, Y. Chen, C. C. Boon, P.-I. Mak, and R. P. Martins, “A 0.096 mm2 1–20-GHz Triple-Path Noise-Canceling Common-Gate Common-Source LNA With Dual Complementary pMOS–nMOS Configuration”, IEEE Transactions on Microwave Theory and Techniques, no. 1, pp. 144–159, 2020.10.1109/TMTT.2019.2949796
  8. [8] H. Yu, Y. Chen, C. C. Boon, C. Li, P.-I. Mak, and R. P. Mar-tins, “A 0.044-mm2 0.5-to-7-GHz Resistor-Plus-Source-Follower -Feedback Noise-Cancelling LNA Achieving a Flat NF of 3.3± 0.45 dB”, IEEE Transactions on Circuits and Systems II: Express Briefs, no. 1, pp. 71–75, Jan 2019.10.1109/TCSII.2018.2833553
  9. [9] W.-H. Chen, G. Liu, B. Zdravko, and A. M. Niknejad, “A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation”, IEEE Journal of Solid-State Circuits, no. 5, pp. 1164–1176, 2008.
  10. [10] B. Guo, J. Chen, L. Li, H. Jin, and G. Yang, “A Wideband Noise-Canceling CMOS LNA With Enhanced Linearity by Using Complementary nMOS and pMOS Configurations”, IEEE Journal of Solid-State Circuits, no. 5, pp. 1331–1344, 2017.
  11. [11] J. Chang and Y. Lin, “0.99 mW 3-10 GHz common-gate CMOS UWB LNA using T-match input network and self-body-bias technique”, Electronics Letters, no. 11, pp. 658–659, 2011.10.1049/el.2011.0619
  12. [12] S. V. Ankathi, S. Athukuri, S. Mohan, K. Balamurugan, and M. N. Devi, “A 5–7 GHz current reuse and gm-boosted common gate low noise amplifier with LC based ESD protection in 32 nm CMOS”, Analog Integrated Circuits and Signal Processing, pp. 573–589, 2017.10.1007/s10470-016-0915-x
  13. [13] Y.-T. Chang and H.-C. Lu, “A V-Band Low-Power Digital Variable-Gain Low-Noise Amplifier Using Current-Reused Technique With Stable Matching and Maintained OP1dB”, IEEE Transactions on Microwave Theory and Techniques, no. 11, pp. 4404–4417, 2019.
  14. [14] M. Chen and J. Lin, “A 0.1–20 GHz Low-Power Self-Biased Resistive-Feedback LNA in 90 nm Digital CMOS”, IEEE Microwave and Wireless Components Letters, no. 5, pp. 323–325, 2009.10.1109/LMWC.2009.2017608
  15. [15] K.-H. Chen and S.-I. Liu, “Inductorless Wideband CMOS Low-Noise Amplifiers Using Noise-Canceling Technique”, IEEE Transactions on Circuits and Systems I: Regular Papers, no. 2, pp. 305–314, Feb 2012.10.1109/TCSI.2011.2162461
  16. [16] S. Woo, W. Kim, C.-H. Lee, H. Kim, and J. Laskar, “A Wideband Low-Power CMOS LNA With Positive–Negative Feedback for Noise, Gain, and Linearity Optimization”, IEEE Transactions on Microwave Theory and Techniques, no. 10, pp. 3169–3178, 2012.
  17. [17] H. Lee, T. Chung, H. Seo, I. Choi, and B. Kim, “A Wideband Differential Low-Noise-Amplifier With IM3 Harmonics and Noise Canceling”, IEEE Microwave and Wireless Components Letters, no. 1, pp. 46–48, 2015.10.1109/LMWC.2014.2365733
  18. [18] J. Jang, H. Kim, G. Lee, and T. W. Kim, “Two-Stage Compact Wideband Flat Gain Low-Noise Amplifier Using High-Frequency Feedforward Active Inductor”, IEEE Transactions on Microwave Theory and Techniques, no. 12, pp. 4803–4811, 2019.
  19. [19] A. Bozorg and R. B. Staszewski, “A 0.02–4.5-GHz LN(T)A in 28-nm CMOS for 5G Exploiting Noise Reduction and Current Reuse”, IEEE Journal of Solid-State Circuits, no. 2, pp. 404–415, 2021.10.1109/JSSC.2020.3018680
  20. [20] P. B. T. Huynh, J.-H. Kim, and T.-Y. Yun, “Dual-Resistive Feedback Wideband LNA for Noise Cancellation and Robust Linearization”, IEEE Transactions on Microwave Theory and Techniques, no. 4, pp. 2224–2235, 2022.
DOI: https://doi.org/10.2478/jee-2022-0045 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 337 - 342
Submitted on: Sep 10, 2022
Published on: Nov 15, 2022
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 Dheeraj Kalra, Vishal Goyal, Mayank Srivastava, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.