Have a personal or library account? Click to login
Robust boundary of stability and design of robust controller in uncertain polytopic linear systems Cover

Robust boundary of stability and design of robust controller in uncertain polytopic linear systems

Open Access
|Jul 2022

References

  1. [1] S. Boyd, L. E. G. E. Feron, and V. Balakrishan, “Linear Matrix Inequalities in System and Control Theory”, 1994.10.1137/1.9781611970777
  2. [2] D. Peaucelle, D. Alzelier, O. Bachelier, and J. Bernussou, “A new robust D stability Condition for real Convex polytopic Uncertainty”, Systems and Control Letters, vol. 40, pp. 21–30, 2000.10.1016/S0167-6911(99)00119-X
  3. [3] C. A. R. Crusius and A. Trofino, “Sufficient LMI onditions for output feedback control problems”, IEEE Trans on ac, vol. 44, no. 5, pp. 1053–1057, 1998.10.1109/9.763227
  4. [4] M. C. d. Oliveira, “A Robust Version of the Elimination Lemma”, 16th Triennial IFAC World Congress, Prague, CD-ROM, 2005.10.3182/20050703-6-CZ-1902.00996
  5. [5] R. E. Benton and D. Smith, “Static Output Feedback Stabilization With Prescribed Degree of Stability”, IEEE Trans. on AC, vol. 43, no. 10, pp. 1493–1496, 1993.10.1109/9.720516
  6. [6] V. Vesely and L. Korosi, “Robust PI-D controller design for uncertain linear polytopic systems using LMI regions and H2 performance”, IEEE Trans. on industry applications, vol55, no. 5, pp. 5353–5359, 2019.10.1109/TIA.2019.2921282
  7. [7] V. Vesely, D. Rosinova, and A. Kozakova, “Robust Controller Design: New approaches in the time and Frequency Domains”, Robust Control Theory and Applications, Ed. A. Bartoszewicz, Intex, 2011.10.5772/15764
  8. [8] V. Vesely and D. Rosinova, “Robust PID-PSD controller design. BMI approach”, Asian Journal of Control, vol. 15, no. 2, pp. 469–478, 2013.10.1002/asjc.559
  9. [9] L. Grman, D. Rosinova, A. Kozakova, and V. Vesely, “Robust Stability Condition for Polytopic Systems”, Int. J. of System Sciences, no 15, pp. 961–973, 2005.10.1080/00207720500389592
  10. [10] V. Vesely, D. Rosinova, and A. Kozakova, Robust Controller Design, Slovak University of Technology in Bratislava, Felia s. r. o. 1st Edition., ISBN: 978-80-971512-6-3, 2015.
  11. [11] T. S. Shores, Applied linear Algebra and Matrix Analysis, Springer-Verlag, New York, 2007.10.1007/978-0-387-48947-6
  12. [12] Z.-P. Jiang and T. Lin, “Small gain theory for stability and control of dynamical networks. A survey”, Annual Review in Control, vol. 46, pp. 58–79, 2018.10.1016/j.arcontrol.2018.09.001
  13. [13] A. Megretski and A. Rantzer, “System analysis via Integral Quadratic Constraints”, IEEE Trans on AC, vol. 42, no. 6, pp. 819–830, June 1997.10.1109/9.587335
  14. [14] V. M. Kuncevich and M. M. Lycak, Control system design using Lyapunov function approach, Nauka, Moscow, (in Russian), 1977.
  15. [15] M. Hovd and S. Skogestad, “Improved independent design of robust decentralized control”, Journal of process Control, vol. 3, no. 1, pp. 43–51, 1993.10.1016/0959-1524(93)80014-3
  16. [16] M. Hovd and S. Skogestad, “Sequantial design of decentralized controllers”, Automatica, vol. 30, no. 10, pp. 601–1607, 1994.10.1016/0005-1098(94)90099-X
  17. [17] A. Kozakova, V. Vesely, and V. Kucera, “Robust Decentralized Controller Design Based on Equivalent Subsystems”, Automatica, vol. 107, pp. 29–35, 2019.10.1016/j.automatica.2019.05.031
DOI: https://doi.org/10.2478/jee-2022-0028 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 209 - 214
Submitted on: Apr 3, 2022
Published on: Jul 11, 2022
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 Jana Paulusová, Ladislav Körösi, Vojtech Veselý, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.