Have a personal or library account? Click to login
Investigation of field free region formed by dual Halbach array for focused magnetic hyperthermia Cover

Investigation of field free region formed by dual Halbach array for focused magnetic hyperthermia

Open Access
|May 2022

References

  1. [1] K. El-Boubbou, “Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery”, Nanomedicine, vol. 13, no. 8, pp. 929-952, doi: 10.2217/nnm-2017-0320 2018.10.2217/nnm-2017-0320
  2. [2] M. Domenech, I. Marrero-Berrios, M. Torres-Lugo, and C. Rinaldi, “Lysosomal Membrane Permeabilization by Targeted Magnetic Nanoparticles in Alternating Magnetic Fields”, ACS Nano, vol. 7, no. 6, pp. 5091-5101, doi: 10.1021/nn4007048 2013.10.1021/nn4007048
  3. [3] C. S. S. R. Kumar, and F. Mohammad, “Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery”, Adv. Drug Deliv. Rev, vol. 63, no. 9, pp. 789-808, doi: 10.1016/j.addr.2011.03.008 2011.10.1016/j.addr.2011.03.008
  4. [4] W. Tao, and et al, “Two-Dimensional Antimonene-Based Photonic Nanomedicine for Cancer Theranostics”, Adv. Mater, vol. 30, no. 38, p. 1802061, doi: 10.1002/adma.201802061 2018.10.1002/adma.201802061
  5. [5] A. Attaluri, and et al, “Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer”, Int. J. Hyperth, vol. 31, no. 4, pp. 359-374, doi: 10.3109/02656736.2015.1005178 2015.10.3109/02656736.2015.1005178
  6. [6] D. Chang, and et al, “Biologically Targeted Magnetic Hyper-thermia: Potential and Limitations”, Front. Pharmacol, vol. 9, doi: 10.3389/fphar.2018.00831 2018.10.3389/fphar.2018.00831
  7. [7] W. F. Brown, “Thermal Fluctuations of a Single-Domain Particle”, Phys. Rev, vol. 130, no. 5, pp. 1677-1686, doi: 10.1103/PhysRev.130.1677 1963.10.1103/PhysRev.130.1677
  8. [8] R. E. Rosensweig, “Heating magnetic fluid with alternating magnetic field”, J. Magn. Magn. Mater, vol. 252, pp. 370-374, doi: 10.1016/S0304-8853(02)00706-0 2002.10.1016/S0304-8853(02)00706-0
  9. [9] B. Tigli, “Numerical Analysis Of The Distribution Of Nanoparticles In The Treatment Of Hyperthermia Of Tumors”,, Gazi Üniversitesi, 2019.
  10. [10] R. Dhavalikar, and C. Rinaldi, “Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients”, J. Magn. Magn. Mater, vol. 419, pp. 267-273, doi: 10.1016/j.jmmm.2016.06.038 2016.10.1016/j.jmmm.2016.06.038560425828943706
  11. [11] P. Cantillon-Murphy, L. L. Wald, E. Adalsteinsson, and M. Zahn, “Heating in the MRI environment due to superparamagnetic fluid suspensions in a rotating magnetic field”, J. Magn. Magn. Mater, vol. 322, no. 6, pp. 727-733, doi: 10.1016/j.jmmm.2009.10.050 2010.10.1016/j.jmmm.2009.10.050281134220161608
  12. [12] J. L. Ristic-Djurovic, and et al, “Design and Optimization of Electromagnets for Biomedical Experiments With Static Magnetic and ELF Electromagnetic Fields”, IEEE Trans. Ind. Electron, vol. 65, no. 6, pp. 4991-5000, doi: 10.1109/TIE.2017.2772158 2018.10.1109/TIE.2017.2772158
  13. [13] S. Huang, Z. H. Ren, S. Obruchkov, J. Gong, R. Dykstra, and W. Yu, “Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays”, Investig. Magn. Reson. Imaging, vol. 23, no. 3, p. 179, doi: 10.13104/imri.2019.23.3.179 2019.10.13104/imri.2019.23.3.179
  14. [14] Z. Li, and et al, “Constituting abrupt magnetic flux density change for power density improvement in electromagnetic energy harvesting”, Int. J. Mech. Sci, vol. 198, p. 106363, doi: 10.1016/j.ijmecsci.2021.106363 2021.10.1016/j.ijmecsci.2021.106363
  15. [15] T. O. Tasci, I. Vargel, A. Arat, E. Guzel, P. Korkusuz, and E. Atalar, “Focused RF hyperthermia using magnetic fluids”, Med. Phys, vol. 36, no. 5, pp. 1906-1912, doi: 10.1118/1.3106343 2009.10.1118/1.3106343273671119544810
  16. [16] Y. Lu, and et al, “Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image- guided treatment”, Int. J. Hyperth, vol. 37, no. 3, pp. 141-154, doi: 10.1080/02656736.2020.1853252 2020.10.1080/02656736.2020.185325233426994
  17. [17] M. Ma, Y. Zhang, X. Shen, J. Xie, Y. Li, and N. Gu, “Targeted inductive heating of nanomagnets by a combination of alternating current (AC) and static magnetic fields”, Nano Res, vol. 8, no. 2, pp. 600610, doi: 10.1007/s12274-015-0729-7 2015.10.1007/s12274-015-0729-7
  18. [18] D. L. Trumper, M. E. Williams, and T. H. Nguyen, “Magnet arrays for synchronous machines,¿—”, Conference Record of the IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting, pp. 9-18, doi: 10.1109/IAS..298897 1993.
  19. [19] L. M. Bauer, S. F. Situ, M. A. Griswold, and A. C. S. Samia, “High-performance iron oxide nanoparticles for magnetic particle imaging guided hyperthermia (hMPI)”, Nanoscale, vol. 8, no. 24, pp. 12162-12169, doi: 10.1039/C6NR01877G 2016.10.1039/C6NR01877G27210742
  20. [20] Q. Zhao, and et al, “Magnetic Nanoparticle-Based Hyperthermia for Head dnd Neck Cancer in Mouse Models”, Theranostics, vol. 2, no. 1, pp. 113-121, doi: 10.7150/thno. 3854 2012.
  21. [21] V. Vilas-Boas, F. Carvalho, and B. Espia, “Magnetic Hyper-thermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies”, Molecules, vol. 25, no. 12, p. 2874, doi: 10.3390/molecules25122874 2020.10.3390/molecules25122874736221932580417
DOI: https://doi.org/10.2478/jee-2022-0020 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 152 - 157
Submitted on: Jan 1, 2022
Published on: May 14, 2022
Published by: Slovak University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2022 Serhat Küçükdermenci, published by Slovak University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.