Have a personal or library account? Click to login
Spectral and energy efficiency trade-off in massive MIMO systems using multi-objective bat algorithm Cover

Spectral and energy efficiency trade-off in massive MIMO systems using multi-objective bat algorithm

Open Access
|May 2022

References

  1. [1] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO Networks: Spectral, Energy and Hardware Efficiency”, Foundation and Trends in Signal Processing, pp. 154–655, doi: 10.1561/2000000093, 2017.10.1561/2000000093
  2. [2] A. Fehske, G. Fettweis, J. Malmodin, and G. Biczok, “The Global Footprint of Mobile Communications: The Ecological and Economic Perspective”, IEEE Transactions on Wireless Communications vol. 49, no. 8, pp. 55–62, doi: 10.1109/MCOM.2011.597 8416, 2011.
  3. [3] Q. He, L. Xiao, X. Zhong, and S. Zhou, “Increasing the Sum-throughput of Cells with a Sectorization Method for Massive MIMO”, IEEE Communications Letters, vol. 18, no. 10, pp. 1827–1830, doi: 10.1109/LCOMM.2014.2346483, 2014.10.1109/LCOMM.2014.2346483
  4. [4] B. Zhang, Y. Tian, and W. Wang, “On the Downlink Throughput Capacity of Hybrid Wireless Networks with Massive MIMO”, Eurasip Journal on Wireless Communications and Networking, vol. 1, no. 110, pp. 26086–26091, doi: 10.1186/s13638-018-1134-1, 2018.10.1186/s13638-018-1134-1
  5. [5] G. Yang, C. K. Ho, R. Zhang, and Y. L. Guan, “Throughput Optimization for Massive MIMO Systems Powered by Wireless Energy Transfer”, IEEE Journal on Selected Areas in Communications vol. 33, no. 8, pp. 1640–1650, doi: 10.1109/JSAC.2015.2391835, 2015.10.1109/JSAC.2015.2391835
  6. [6] F. Heydari, S. Ghazi-Maghrebi, A. Shahzadi, and M. J. R. Fatemi, “Better spectral efficiency of device to device underlying massive multi-input multi-output using receiver filter algorithm and power control model”, International Journal of Communication Systems, vol. 34, no. 5, pp. e4655, doi: 10.1002/dac.4655, 2021.10.1002/dac.4655
  7. [7] T. Zeng, and E. Ouyang, “Massive multi-in multi-out multiuser multiplexing based on transmission mode 3”, International Journal of Communication Systems, vol. 34, no. 7, pp. e4761, doi: 10.1002/dac.4761, 2021.10.1002/dac.4761
  8. [8] A. Shukla, V. Goyal, M. Kumar, M. C. Trivedi, and V. K. Deolia, “MMSE based beamformer in massive MIMO-IDMA downlink systems”, Journal of Electrical Engineering, vol. 71, no. 1, pp. 65–68, doi: 10.2478/jee-2020-0010, 2020.10.2478/jee-2020-0010
  9. [9] B. K. Gül, and N. Taşpınar, “Application of Intelligent Optimization Techniques to Spectral and Energy Efficiencies in Massive MIMO Systems at Different Circuit Power Levels”, Mühendislik Bilimleri ve Arastirmalari Dergisi, vol. 3, no. 1, pp. 102–111, doi: 10.46387/bjesr. 893643, 2021.
  10. [10] Z. Liu, W. Du, and D. Sun, “Energy and Spectral Efficiency Tradeoff for Massive MIMO Systems with Transmit Antenna Selection”, IEEE Transactions on Vehicular Technology, vol. 66, no. 5, pp. 4453-4457, doi: 10.1109/TVT.2016.2598842, 2017.10.1109/TVT.2016.2598842
  11. [11] Y. Hei, C. Zhang, W. Song, and Y. Kou, “Energy and Spectral Efficiency Tradeoff in Massive MIMO Systems with Multi-objective Adaptive Genetic Algorithm”, Soft Computing, vol. 23, no. 16, pp. 7163–7179, doi: 10.1007/s00500-018-3356-x, 2019.10.1007/s00500-018-3356-x
  12. [12] E. Björnson, E. G. Larsson, and M. Debbah, “Massive MIMO for Maximal Spectral Efficiency: How Many Users and Pilots Sholud Be Allocated?”, IEEE Transactions on Wireless Communiations, vol. 15, no. 2, pp. 1293–1308, doi: 10.1109/TWC.2015.2488634, 2015.10.1109/TWC.2015.2488634
  13. [13] L. Li, W. Meng, and S. Ju, “A novel artificial bee colony detection algorithm for massive MIMO system”, Wireless Communications and Mobile Computing, vol. 16, pp. 3139–3152, doi: 10.1002/wcm 2754, 2016.
  14. [14] X.-S. Yang, “Bat algorithm for multi-objective optimisation”, International Journal of Bio-Inspired Computation, vol. 3, no. 4, pp. 267–274, doi: 10.1504/IJBIC.2011.042259, 2011.10.1504/IJBIC.2011.042259
  15. [15] Y. Yuan, H. Xu, B. Zhang, and X. Yao, “Balancing convergence and diversity in decomposition-based many-objective optimizers”, IEEE Transactions on Evolutionary Computation, vol. 19, no. 5, pp. 694–716, doi: 10.1109/TEVC.2015.2443001, 2015.10.1109/TEVC.2015.2443001
  16. [16] C. Goh, and K. C. Tan, “An investigation on noisy environments in evolutionary multiobjective optimization”, IEEE Transactions on Evolutionary Computation, vol. 11, no. 3, pp. 354–381, doi: 10.1109/TEVC.2006.882428, 2007.10.1109/TEVC.2006.882428
  17. [17] J. Schott, “Fault tolerant design using single and multicriteria genetic algorithm optimization”, MS thesis, Massachusetts Technology, 1995.
  18. [18] T. Murata, and H. Ishibuchi, “MOGA: Multiobjective genetic algorithms”, Proc. of IEEE International Conference on Evolutionary Computation, pp. 289–294, 1995.
  19. [19] W. Gong, and Z. Cai, “A multiobjective differential evolution algorithm for constrained optimization”, IEEE Congress on Evolutionary Computation, pp. 181–188, doi: 10. 1109/CEC.2008.46 30 796, 2008.
  20. [20] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple objectives with particle swarm optimization”, IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 256–279, doi: 10.1109/TEVC.2004.826067, 2004.10.1109/TEVC.2004.826067
DOI: https://doi.org/10.2478/jee-2022-0017 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 132 - 139
Submitted on: Jan 19, 2022
Published on: May 14, 2022
Published by: Slovak University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2022 Burak Kürşat Gül, Necmi Taşpınar, published by Slovak University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.