Have a personal or library account? Click to login
Study of subjective and objective quality assessment of infrared compressed images Cover

Study of subjective and objective quality assessment of infrared compressed images

Open Access
|May 2022

References

  1. [1] D. R. Bull and F. Zhang, Intelligent image and video compression: communicating pictures, Second Edition, Academic Press, 2021.10.1016/B978-0-12-820353-8.00022-0
  2. [2] R. Gade and T. B. Moeslund, “Thermal cameras and applications: a survey”, Machine Vision and Applications, vol. 25, no. 1, pp. 245–262, doi: 10.1007/s00138–013–0570–5, 2014.10.1007/s00138-013-0570-5
  3. [3] D. Peric, B. Livada, M. Peric, and S. Vujic, “Thermalimager range: predictions, expectations, and reality”, Sensors, vol. 19, no. 15, pp. 3313-1-23, doi: 10.3390/s19153313, 2019.10.3390/s19153313669621531357690
  4. [4] M. Diakides, J. D. Bronzino, and D. R. Peterson, Medical infrared imaging: principles and practices, First Edition, CRC Press, 2012.10.1201/b12938
  5. [5] R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, “Infrared thermography for temperature measurement and non–destructive testing”, Sensors, vol. 14, no. 7, pp. 12305–12348, doi: 10.3390/s140712305, 2014.10.3390/s140712305416842225014096
  6. [6] M. J. Haque and M. Muntjir, “Night vision technology: an overview”, International Journal of Computer Applications,vol. 167, no. 13, pp. 8887–37–42, doi: 10.5120/ijca914562, 2017.
  7. [7] G. Chen and W. Wang, “Target recognition in infrared circumferential scanning system via deep convolutional neural networks”, Sensors, vol. 20, no. 7, pp. 1922–1–18, doi: 10.3390/s20 071922, 2020.
  8. [8] B. P. Bondžulić, B. Z. Pavlović, and V. S. Petrović, “Performance analysis of full–reference objective image and video quality assessment metrics”, Vojnotehnicki glasnik / Military Technical Courier, vol. 66, no. 2, pp. 322–350, doi: 10.5937/vojtehg66-12708, 2018.10.5937/vojtehg66-12708
  9. [9] Methodologies for the subjective assessment of the quality of television images, Recommendation ITU–R, BT, 500–14 10/2019, International Telecommunication Union, Geneva, Switzerland, 2020.
  10. [10] T. R. Goodall, A. C. Bovik, and N. G. Paulter, “Tasking on natural statistics of infrared images”, IEEE Transactions on Image Processing, vol. 25, no. 1 pp. 65–79, doi: 10.1109/TIP.2496289, 2015.
  11. [11] K. Hossain, C. Mantel, and S. O. Forchhammer, “No-reference prediction of quality metrics for H. 264-compressed infrared sequences for unmanned aerial vehicle applications”, Journal of Electronic Imaging, vol. 28, no. 4, pp. 043012–1–14, doi: 10.1117/1.JEI.28.4.043012, 2019.10.1117/1.JEI.28.4.043012
  12. [12] M. Teutsch, S. Sedelmaier, S. Moosbauer, G. Eilertsen, and T. Walter, “An evaluation of objective image quality assessment for thermal infrared video tone mapping”, IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, June 14–19, pp. 108–109, doi: 10.1109/CVPRW50498.00062, 2020.
  13. [13] E. Belyaev, C. Mantel, and S. Forchhammer, “High bit depth infrared image compression via low bit depth codecs”, SPIE 10403, 15th Infrared Remote Sensing and Instrumentation, San Diego, California, USA, August 7–8, pp. 104030A–1–8, doi: 10.1117/12.2275542, 2017.10.1117/12.2275542
  14. [14] D. Salomon and G. Motta, Handbook of data compression, Fifth Edition, Springer, 2010.10.1007/978-1-84882-903-9
  15. [15] A. J. Hussain, A. Al-Fayadh, and N. Radi “Image compression techniques: a survey in lossless and lossy algorithms”, Neuro-computing, vol. 300, pp. 44–69, doi: 10.1016/j.neucom.02.094, 2018.
  16. [16] M. S. Al-Ani and F. H. Awad “The JPEG image compression algorithm”, International Journal of Advances in Engineering & Technology, vol. 6, no. 3, pp. 1055–1062, 2013.
  17. [17] R. C. Gonzalez and R. E. Woods, Digital image processing, Third Edition, Pearson, Ch 10, pp. 743–747, 2008.
  18. [18] C. M. Brislawn and M. D. Quirk, Image compression: JPEG-20 00 standard, Encyclopedia of Optical and Photonic Engineering, Second Edition, CRC Press, Ch 83, 2015.
  19. [19] F. Ebrahimi, M. Chamik, and S. Winkler, “JPEG vs. JPEG 2000: an objective comparison of image encoding quality”, Optical Science and Technology, the SPIE 49th Annual Meeting, Denver, Colorado, USA, August 2–6, pp. 300–308, doi: 10.1117/12.564835, 2004.10.1117/12.564835
  20. [20] R. Maini and S. Mehra “A review on JPEG2000 image compression”, International Journal of Computer Applications, vol. 11, no. 9, pp. 43–47, doi: 10.5120/1607-2159, 2000.10.5120/1607-2159
  21. [21] Y. Q. Shi and H. Sun, Image and video compression for multimedia engineering: fundamentals, algorithms, and standards, Third Edition, CRC Press, 2019.10.1201/9781315097954
  22. [22] Z. Wang and A. C. Bovik, “Mean squared error: love it or leave it? A new look at signal fidelity measures”, IEEE Signal Processing Magazine, vol. 26, no. 1, pp. 98–117, doi: 10.1109/MSP.2008.930649, 2009.10.1109/MSP.2008.930649
  23. [23] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity”, IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, doi: 10.1109/TIP.2003.819861, 2004.10.1109/TIP.2003.819861
  24. [24] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment”, The 37th Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, November 9-12, pp. 1398–1402, 2003.
  25. [25] Z. Wang and Q. Li, “Information content weighting for perceptual image quality assessment”, IEEE Transactions on Image Processing, vol. 20, no. 5, pp. 1185–1198, doi: 10.1109/TIP.2092 435, 2010.
  26. [26] L. Zhang and H. Li, “SR SIM: a fast and high performance IQA index based on spectral residual”, 19th IEEE International Conference on Image Processing, Orlando, FL, USA, September 30-October 3, pp. 1473–1476, doi: 10.1109/ICIP.6467149, 2012.
  27. [27] X. Hou and L. Zhang, “Saliency detection: a spectral residual approach”, IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, June 17-22, pp. 1–8, doi: 10.1109/CVPR.383267, 2007.
  28. [28] H. Jia, L. Zhang, and T. Wang, “Contrast and visual saliency similarity–induced index for assessing image quality”, IEEE Access, vol. 6, pp. 65885–65893, doi: 10.1109/ACCESS.2878739, 2018.
  29. [29] S. Li, F. Zhang, L. Ma, and K. N. Ngan, “Image quality assessment by separately evaluating detail losses and additive impairments”, IEEE Transactions on Multimedia, vol. 13, no. 5, pp. 935–949, doi: 10.1109/TMM.2152382, 2011.
  30. [30] A. Liu, W. Lin, and M. Narwaria, “Image quality assessment based on gradient similarity”, IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 1500–1512, doi: 10.1109/TIP.2175935, 2011.
  31. [31] W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude similarity deviation: a highly efficient perceptual image quality index”, IEEE Transactions on Image Processing, vol. 23, no. 2, pp. 684–695, doi: 10.1109/TIP.2293423, 2013.
  32. [32] T. Wang, L. Zhang, H. Jia, B. Li, and H. Shu, “Multiscale contrast similarity deviation: an effective and efficient index for perceptual image quality assessment”, Signal Processing: Image Communication, vol. 45, pp. 1–9, doi: 10.1016/j.image.04.005, 2016.
  33. [33] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: a feature similarity index for image quality assessment”, IEEE Transactions on Image Processing, vol. 20, no. 8, pp. 2378–2386, doi: 10.1109/TIP.2109730, 2011.
  34. [34] R. Reisenhofer, S. Bosse, G. Kutyniok, and T. Wiegand, “A Haar wavelet–based perceptual similarity index for image quality assessment”, Signal Processing: Image Communication, vol. 61, pp. 33–43, doi: 10.1016/j.image.2017.11.001, 2018.10.1016/j.image.2017.11.001
  35. [35] L. Zhang, L. Zhang, and X. Mou, “RFSIM: a feature based image quality assessment metric using Riesz transforms”, 17th IEEE International Conference on Image Processing, Hong Kong, Hong Kong, September 12-15, pp. 321–324, doi:10.1109/ICIP. 5649275, 2010.
  36. [36] G. Yang, D. Li, F. Lu, Y. Liao, and W. Yang, “RVSIM: a feature similarity method for full-reference image quality assessment”, EURASIP Journal on Image and Video Processing, vol. 2018, no. 1, pp. 1–15, doi: 10.1186/s13640–018–0246–1, 2018.10.1186/s13640-018-0246-1
  37. [37] M. Layek, A. F. M. Uddin, T. P. Le, T. Chung, and E. N. Huh, “Center-emphasized visual saliency and a contrast-based full reference image quality index”, Symmetry, vol. 11, no. 3, pp. 296–1–14, doi: 10.3390/sym11030296, 2019.10.3390/sym11030296
  38. [38] E. C. Larson and D. M. Chandler, “Most apparent distortion: full-reference image quality assessment and the role of strategy”, Journal of Electronic Imaging, vol. 19, no. 1, pp. 011006–1–21, doi: 10.1117/1.3267105, 2010.10.1117/1.3267105
  39. [39] X. Yu, C. G. Bampis, P. Gupta, and A. C. Bovik, “Predicting the quality of images compressed after distortion in two steps”, IEEE Transactions on Image Processing, vol. 28, no. 12, pp. 5757–5770, doi: 10.1109/TIP.2922850, 2019.
  40. [40] H. R. Sheikh and A. C. Bovik, “Image information and visual quality”, IEEE Transactions on Image Processing, vol. 15, no. 2, pp. 430–444, doi: 10.1109/TIP.2005.859378, 2006.10.1109/TIP.2005.859378
  41. [41] J. Wu, W. Lin, G. Shi, and A. Liu, “Perceptual quality metric with internal generative mechanism”, IEEE Transactions on Image Processing, vol. 22, no. 1, pp. 43–54, doi: 10.1109/TIP.2214048, 2012.
  42. [42] H. W. Chang, H. Yang, Y. Gan, and M. H. Wang, “Sparse feature fidelity for perceptual image quality assessment”, IEEE Transactions on Image Processing, vol. 22, no. 10, pp. 4007–4018, doi: 10.1109/TIP.2266579, 2013.
  43. [43] K. Ding, K. Ma, S. Wang, and E. P. Simoncelli, “Image quality assessment: unifying structure and texture similarity”, IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 44, no. 5, pp. 2567-2581, doi: 10.1109/TPAMI.2020.3045810, 2022.10.1109/TPAMI.2020.304581033338012
  44. [44] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely blind” image quality analyzer”, IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209–212, doi: 10.1109/LSP.2227726, 2012.
  45. [45] S. Merrouche, D. Bujakovic, M. Andric, and B. Bondulic, “Classification of infrared image distortions using contrast–based features”, International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, July 11-12, pp. 1–4, doi: 10.1109/ISSCS.8801761, 2019.
  46. [46] N. J. Morris, S. Avidan, W. Matusik, and H. Pfister, “Statistics of infrared images”, IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, June 17-22, pp. 1–7, doi: 10.1109/CVPR.383003, 2007.
  47. [47] A. Toet, M. A. Hogervorst, and A. R. Pinkus, “The TRICLOBS dynamic multi-band image data set for the development and evaluation of image fusion methods”, PloS one, vol. 11, no. 12, e0165016, doi: 10.1371/journal.pone.0165016, 2016.10.1371/journal.pone.0165016520127628036328
  48. [48] B. Bondžulić and V. Petrović, “Multisensor background extraction and updating for moving target detection”, 11th International Conference on Information Fusion, Cologne, Germany, 30 June-3 July, pp. 1–8, doi: 10.1109/ICIF.4632435, 2008.
  49. [49] D. L. Ruderman, “The statistics of natural images”, Network: Computation in Neural Systems, vol. 5, no. 4, pp. 517–548, 1994.10.1088/0954-898X_5_4_006
  50. [50] D. E. Moreno-Villamarín, H. D. Bentez–Restrepo, and A. C. Bovik, “Predicting the quality of fused long wave infrared and visible light images”, IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3479–3491, doi: 10.1109/TIP.2695898, 2017.
DOI: https://doi.org/10.2478/jee-2022-0011 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 73 - 87
Submitted on: Feb 14, 2022
Published on: May 14, 2022
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2022 Omar Zelmati, Boban Bondžulić, Boban Pavlović, Ivan Tot, Saad Merrouche, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.