Have a personal or library account? Click to login
Pressure and humidity detector based on textile integrated waveguide Cover

Pressure and humidity detector based on textile integrated waveguide

By: Martin Kokolia and  Zbynek Raida  
Open Access
|Mar 2022

References

  1. [1] W. He, C. Wang, H. Wang, M. Jian, W. Lu, X. Liang, X. Zhang, F. Yang, and Y. Zhang, “Integrated Textile Sensor Patch for Real–Time and Multiplex Sweat Analysis”, Science Advances, vol. 5, no. 11, pp. 1–8, 2019.10.1126/sciadv.aax0649683993631723600
  2. [2] D. Teichmann, A. Kuhn, S. Leonhardt, and M. Walter, “The Main Shirt: A Textile–Integrated Magnetic Induction Sensor Array”, Sensors, vol. 14, no. 1, pp. 1039–1056, 2014.10.3390/s140101039
  3. [3] A. V. Cioffi, A. Raffo, and S. Costanzo, “Preliminary Validations of Textile Wearable Microwave Sensor for Biomedical Applications”, 13th European Conference on Antennas and Propagation, Krakow vol., no. Poland, IEEE, 2019.
  4. [4] M. Cupal et al, “Textile–Integrated Electronics for Small Airplanes”, 12th European Conference on Antennas and Propagation, London vol., no. UK, IEEE, 2018.10.1049/cp.2018.0845
  5. [5] C. Loss, C. Gouveia, R. Salvado, P. Pinho, and J. Vieira, “Textile Antenna for Bio–Radar Embedded in a Car Seat”, Materials, vol. 14, no. 1, pp. 1–18, 2021.10.3390/ma14010213779542333406756
  6. [6] C. Ataman, T. Kinkeldei, G. Mattana, A. V. Quintero, F. Molina–lopez, J. Courbat, K. Cherenack, D. Briand, G. Trster, and N. F. d. Rooij, “Robust Platform for Textile Integrated Gas Sensors”, Sensors & Actuators B: Chemical, vol. 177, pp. 1053–1061, 2013.10.1016/j.snb.2012.11.099
  7. [7] Y. J. Yun, W. G. Hong, N. J. Choi, B. H. Kim, Y. Jun, and H. K. Lee, “Ultrasensitive and Highly Selective Graphene–Based Single Yarn for Use in Wearable Gas Sensor”, Scientific Reports, vol. 5, no. 1, article pp, 10904, 2015.10.1038/srep10904445525326043109
  8. [8] T. Kinkeldei, C. Zysset, K. H. Cherenack, and G. Troster, “A Textile Integrated Sensor System for Monitoring Humidity and Temperature”, 16th International Conference on Solid–State Sensors, Actuators and Microsystems, Beijing vol., no. China, IEEE, 2011.10.1109/TRANSDUCERS.2011.5969238
  9. [9] C. Zysset, N. Nasseri, L. Bthe, N. Mnzenrieder, T. Kinkeldei, L. Petti, S. Kleiser, G. A. Salvatore, M. Wolf, and G. Trster, “Textile Integrated Sensors and Actuators for Near–Infrared Spectroscopy”, Optics Express, vol. 21, no. 3, pp. 3213–3224, 2013.10.1364/OE.21.003213
  10. [10] J. Tabor, T. Agcayazi, A. Fleming, B. Thompson, A. Kapoor, M. Liu, M. Y. Lee, H. Huang, A. Bozkurt, and T. K. Ghosh, “Textile–Based Pressure Sensors for Monitoring Prosthetic–Socket Interfaces”, IEEE Sensors Journal, vol. 21, no. 7, pp. 9413–9422, 2021.10.1109/JSEN.2021.3053434
  11. [11] S. K. Bahadir, F. Kalaoglu, S. Thomassey, I. Cristian, and V. Koncar, “A Study on the Beam Pattern of Ultrasonic Sensor Integrated to Textile Structure”, ternational Journal of Clothing Science and Technology, vol. 23, no. 4, pp. 232–241, 2011.10.1108/09556221111136494
  12. [12] M. Kokolia, “Hexagonal–Cell Artifical Magnetic Conductor Waveguide”, ternational Conference on Microwave Techniques, Pardubice (Czech Rep,): IEEE, 2019.10.1109/COMITE.2019.8733462
  13. [13] M. Kokolia and Z. Raida, “Textile-Integrated Microwave Components Based on Artificial Magnetic Conductor”, ternational Journal of Numerical Modelling, vol. 34, no. 4, 2021.10.1002/jnm.2864
  14. [14] H. Kou, Q. Tan, Y. Wang, G. Zhang, S. Shujing, and J. Xiong, “A Microwave SIW Sensor Loaded with CSRR for Wireless Pressure Detection in High–Temperature Environments”, Journal of Physics. D: Applied Physics, vol. 53, no. 8, pp, 85101, 2019.10.1088/1361-6463/ab58f2
  15. [15] C. Arenas–Buendia, F. Gallee, A. Valero–Nogueira, and C. Person, “RF Sensor Based on Gap Waveguide Technology in LTCC for Liquid Sensing”, 9th European Conference on Antennas and Propagation, Lisbon vol., no. Portugal, IEEE, 2015.
  16. [16] U. H. Khan, B. Aslam, M. A. Azam, Y. Amin, and H. Tenhunen, “Compact RFID Enabled Moisture Sensor”, Radioengineering, vol. 25, no. 3, pp. 449–456, 2016.10.13164/re.2016.0449
  17. [17] J. Naqui, M. Durn–Sindreu, and F. Martn, “Alignment and Position Sensors Based on Split Ring Resonators”, Sensors, vol. 12, no. 9, pp, 11790, 2012.10.3390/s120911790
  18. [18] M. Sameer and P. Agarwal, “Coplanar Waveguide Microwave Sensor for Label–Free Real–Time Glucose Detection”, Radio-engineering, vol. 28, no. 2, pp. 491–495, 2019.10.13164/re.2019.0491
  19. [19] M. Kokolia and Z. Raida, “Milimeter–Wave Propagation in 3D Knitted Fabrics”, 22nd International Microwave and Radar Conference, Poznan vol., no. Poland, IEEE, 2018.10.23919/MIKON.2018.8405319
  20. [20] D. Elsheikh and A. R. Eldamak, “Microwave Textile Sensors for Breast Cancer Detection”, National Radio Science Conference, Mansoura vol., no. Egypt, IEEE, 2021.10.1109/NRSC52299.2021.9509829
  21. [21] M. E. Gharbi, R. Fernndez–Garca, and I. Gil, “Textile Antenna–Sensor for In Vitro Diagnostics of Diabetes”, Electronics, vol. 10, no. 13, 2021.10.3390/electronics10131570
  22. [22] F. Nikbakhtnasrabadi, H. E. Matbouly, M. Ntagios, and R. Dahiya, “Textile–Based Stretchable Microstrip Antenna with Intrinsic Strain Sensing”, ACS Applied Electronic Materials, vol. 3, no. 5, pp. 2233–2246, 2021.10.1021/acsaelm.1c00179
  23. [23] M. E. Gharbi, M. Martinez–Estarada, R. Fernndez–Garca, and I. Gil, “Determination of Salinity and Sugar Concentration by Means of a Circular–Ring Monopole Textile Antenna–Based Sensor”, IEEE Sensors Journal, vol. 21, no. 21, pp. 23751–23760, 2021.10.1109/JSEN.2021.3112777
  24. [24] J. A. Toro, W. F. M. Granada, and S. M. Y. Zuluaga, “Design and Implementation of a Wearable Patch Antenna that Serves as a Longitudinal Strain Sensor”, Textile Research Journal, 2021.
  25. [25] M. Roudjane, S. Bellemare–Rousseau, E. Drouin, B. Belanger–Huot, M. A. Dugas, A. Miled, and Y. Messaddeq, “Smart T–Shirt Based on Wireless Communication Spiral Fiber Sensor Array for Real–Time Breath Monitoring: Validation of the Technology”, IEEE Sensors Journal, vol. 20, no. 18, pp. 10841–10850, 2020.10.1109/JSEN.2020.2993286
  26. [26] M. Roudjane, M. Khalil, H. Abed, A. Miled, and Y. Messaddeq, “Wearable Scanner Platform Based on Fiber Sensor Array for Real Time Breath Detection”, 18th IEEE International Conference on New Circuits and Systems, Montreal vol., no. Canada, IEEE, 2020.10.1109/NEWCAS49341.2020.9159827
  27. [27] G. Atanasova and N. Atanasov, “Small Antennas for Wearable Sensor Networks: Impact of the Electromagnetic Properties of the Textiles on Antenna Performance”, Sensors, vol. 20, no. 18, pp. 1–21, 2020.10.3390/s20185157757087332927710
  28. [28] S. Costanzo and V. Cio, “Preliminary SAR Analysis of Textile Antenna Sensor for Non–Invasive Blood–Glucose Monitoring”, Advances in Intelligent Systems and Computing, vol. 1137 AISC, pp. 607–612, 2020.10.1007/978-3-030-40690-5_58
  29. [29] S. Ghosh, B. Nitin, S. Remanan, Y. Bhattacharjee, A. Ghorai, T. Dey, T. K. Das, and N. C. Das, “A Multifunctional Smart Textile Derived from Merino Wool/Nylon Polymer Nanocomposites as Next Generation Microwave Absorber and Soft Touch Sensor”, ACS Applied Materials and Interfaces, vol. 12, no. 15, pp. 17988–18001, 2020.10.1021/acsami.0c02566
  30. [30] B. D. Wiltshire, K. Mirshahidi, A. V. Nadaraja, S. Shabanian, R. Hajiraissi, M. H. Zarifi, and K. Golovin, “Oleophobic Textiles with Embedded Liquid and Vapor Hazard Detection Using Differential Planar Microwave Resonators”, Journal of Hazardous Materials, vol. 409, 2021.10.1016/j.jhazmat.2020.12494533418298
DOI: https://doi.org/10.2478/jee-2022-0008 | Journal eISSN: 1339-309X | Journal ISSN: 1335-3632
Language: English
Page range: 57 - 61
Submitted on: Oct 28, 2021
|
Published on: Mar 12, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2022 Martin Kokolia, Zbynek Raida, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.